Designer cellulosomes – catalytic nanomachines with significant potential in biotechnology and circular economy

Authors

  • Maša Vodovnik University of Ljubljana, Biotechnical Faculty, Department of Microbiology, Chair of Microbiomics, Diversity and Biotechnology, Jamnikarjeva 101, 1000 Ljubljana, Slovenia

DOI:

https://doi.org/10.14720/abs.68.01.21452

Keywords:

Designer cellulosomes, lignocellulose valorization, protein engineering, nanobiotechnology, bio-based products

Abstract

Cellulosomes are multienzyme complexes originally found on the surface of certain anaerobic celluloytic bacteria and fungi that are specialized in the degradation of plant cell walls. Recently, the efficiency in lignocellulose conversion and architectural features of these intricate complexes inspired the construction of artificial chimeric complexes for targeted substrate degradation. The simultaneous advancements in synthetic biology, protein engineering, and the pursuit of greater sustainability across various industries have highlighted the immense potential of these artificially designed enzymatic complexes for diverse applications. Notably, they hold significant promise for industries specializing in valorization of plant biomass waste and the production of bio-based renewable energy. The article discusses the main architectural features, design and construction steps as well as various biotechnological applications of these intriguing nanomachines. 

Metrics

Metrics Loading ...

References

Alves, V.D., Fontes, C.M.G.A., Bule, P., 2021. Cellulosomes: Highly efficient cellulolytic complexes. Subcellular Biochemistry, 96, 323–354. https://doi.org/10.1007/978-3-030-58971-4_9

Anandharaj, M., Lin, Y.-J., Rani, R.P., Nadendla, E.K., Ho, M.-C., Huang, C.-C., Cheng, J.-F., Chang, J.-J., Li, W.-H., 2020. Constructing a yeast to express the largest cellulosome complex on the cell surface. Proceedings of the National Academy of Sciences, 117(5), 2385–2394. https://doi.org/10.1073/pnas.1916529117

Arfi, Y., Shamshoum, M., Rogachev, I., Peleg, Y., Bayer, E.A., 2014. Integration of bacterial lytic polysaccharide monooxygenases into designer cellulosomes promotes enhanced cellulose degradation. Proceedings of the National Academy of Sciences of the USA, 111(25), 9109–9114. https://doi.org/10.1073/pnas.1404148111

Artzi, L., Bayer, E.A., Moraïs, S., 2017. Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides. Nature Reviews Microbiology, 15(2), 83–95. https://doi.org/10.1038/nrmicro.2016.164

Asemoloye, M.D., Bello, T.S., Oladoye, P.O., Gbadamosi, M.R., Babarinde, S.O., Adebami, G.E., Olowe, O.M., Temporiti, M.E.E., Wanek, W., Marchisio, M.A., 2023. Engineered yeasts and lignocellulosic biomaterials: shaping a new dimension for biorefinery and global bioeconomy. Bioengineered, 14(1), 2269328. https://doi.org/10.1080/21655979.2023.2269328

Bayer, E.A., Belaich, J.P., Shoham, Y., Lamed, R., 2004. The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annual Review of Microbiology, 58, 521–554. https://doi.org/10.1146/annurev.micro.57.030502.091022

Bayer, E.A., Chanzy, H., Lamed, R., Shoham, Y., 1998. Cellulose, cellulases and cellulosomes. Current Opinion in Structural Biology, 8(5), 548–557. https://doi.org/10.1016/S0959-440X(98)80143-7

Caspi, J., Barak, Y., Haimovitz, R., Irwin, D., Lamed, R., Wilson, D.B., Bayer, E.A., 2009. Effect of linker length and dockerin position on conversion of a Thermobifida fusca endoglucanase to the cellulosomal mode. Applied and Environmental Microbiology, 75(23), 7335–7342. https://doi.org/10.1128/AEM.01241-09

Chen, C., Cui, Z., Song, X., Liu, Y.J., Cui, Q., Feng, Y., 2016. Integration of bacterial expansin-like proteins into cellulosome promotes cellulose degradation. Applied Microbiology and Biotechnology, 100(5), 2203–2212. https://doi.org/10.1007/s00253-015-7071-6

Dong, C., Qiao, J., Wang, X., et al., 2020. Engineering Pichia pastoris with surface-display minicellulosomes for carboxymethyl cellulose hydrolysis and ethanol production. Biotechnology for Biofuels, 13, 108. https://doi.org/10.1186/s13068-020-01749-1

Fan, L.H., Zhang, Z.J., Yu, X.Y., Xue, Y.X., Tan, T.W., 2012. Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production. Proceedings of the National Academy of Sciences of the USA, 109, 13260–13265. https://doi.org/10.1073/pnas.1209856109

Fierobe, H.P., Mingardon, F., Mechaly, A., Bélaïch, A., Rincon, M.T., Pagès, S., Lamed, R., Tardif, C., Bélaïch, J.P., Bayer, E.A., 2005. Action of designer cellulosomes on homogeneous versus complex substrates: controlled incorporation of three distinct enzymes into a defined trifunctional scaffoldin. Journal of Biological Chemistry, 280(16), 16325–16334. https://doi.org/10.1074/jbc.M414449200

Fierobe, H.P., Mechaly, A., Tardif, C., Belaich, A., Lamed, R., Shoham, Y., Belaich, J.P., Bayer, E.A., 2001. Design and production of active cellulosome chimeras: Selective incorporation of dockerin-containing enzymes into defined functional complexes. Journal of Biological Chemistry, 276(27), 21257–21261. https://doi.org/10.1074/jbc.M102082200

Gayathri, R., Mahboob, S., Govindarajan, M., Al-Ghanim, K.A., Ahmed, Z., Al-Mulhm, N., Vodovnik, M., Vijayalakshmi, S., 2021. A review on biological carbon sequestration: A sustainable solution for a cleaner air environment, less pollution and lower health risks. Journal of King Saud University – Science, 33, 101282. https://doi.org/10.1016/j.jksus.2020.101282

Goyal, G., Tsai, S.L., Madan, B., Dasilva, N.A., Chen, W., 2011. Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome. Microbial Cell Factories, 10, 89. https://doi.org/10.1186/1475-2859-10-89

Hamann, P.R.V., de M.B. Silva, L., Gomes, T.C., Noronha, E.F., 2021. Assembling mini-xylanosomes with Clostridium thermocellum XynA, and their properties in lignocellulose deconstruction. Enzyme and Microbial Technology, 150, 109887. https://doi.org/10.1016/j.enzmictec.2021.109887

Joseph, R.C., Kim, N.M., Sandoval, N.R., 2018. Recent developments of the synthetic biology toolkit for Clostridium. Frontiers in Microbiology, 9, 1. https://doi.org/10.3389/fmicb.2018.00741

Kahn, A., Moraïs, S., Chung, D., Sarai, N.S., Hengge, N.N., Kahn, A., Himmel, M.E., Bayer, E.A., Bomble, Y.J., 2020. Glycosylation of hyperthermostable designer cellulosome components yields enhanced stability and cellulose hydrolysis. FEBS Journal, 287(20), 4370–4388. https://doi.org/10.1111/febs.15251

Kovács, K., Willson, B.J., Schwarz, K., Heap, J.T., Jackson, A., Bolam, D.N., Winzer, K., Minton, N.P., 2013. Secretion and assembly of functional mini-cellulosomes from synthetic chromosomal operons in Clostridium acetobutylicum ATCC 824. Biotechnology for Biofuels, 6, p.117. https://doi.org/10.1186/1754-6834-6-117

Lamote, B., da Fonseca, M.J.M., Vanderstraeten, J., Meert, K., Elias, M., Briers, Y., 2023. Current challenges in designer cellulosome engineering. Applied Microbiology and Biotechnology, 107(9), 2755–2770. https://doi.org/10.1007/s00253-023-12474-8

Lee, M.E., Ko, Y.J., Hwang, D.H., Cho, B.H., Jeong, W.Y., Bhardwaj, N., Han, S.O., 2022. Surface display of enzyme complex on Corynebacterium glutamicum as a whole-cell biocatalyst and its consolidated bioprocessing using fungal-pretreated lignocellulosic biomass. Bioresource Technology, 362, 127758. https://doi.org/10.1016/j.biortech.2022.127758

Levi Hevroni, B., Moraïs, S., Ben-David, Y., Morag, E., Bayer, E.A., 2020. Minimalistic cellulosome of the butanologenic bacterium Clostridium saccharoperbutylacetonicum. mBio, 11(2), e00443-20. https://doi.org/10.1128/mBio.00443-20

Li, Z., Waghmare, P.R., Dijkhuizen, L., Meng, X., Liu, W., 2024. Research advances on the consolidated bioprocessing of lignocellulosic biomass. Engineering Microbiology, 4(2), 100139. Available at: https://www.sciencedirect.com/science/article/pii/S266737032400002X

Liu, Y., Tang, Y., Gao, H., Zhang, W., Jiang, Y., Xin, F., Jiang, M., 2021. Challenges and future perspectives of promising biotechnologies for lignocellulosic biorefinery. Molecules, 26(17), 5411. https://doi.org/10.3390/molecules26175411

Ma, X.Y., Coleman, B., Prabhu, P., Yang, M., Wen, F., 2024. Engineering compositionally uniform yeast whole-cell biocatalysts with maximized surface enzyme density for cellulosic biofuel production. ACS Synthetic Biology, 13(4), 1225–1236. https://doi.org/10.1021/acssynbio.3c00669

Phitsuwan, P., Moraïs, S., Dassa, B., Henrissat, B., Bayer, E.A., 2019. The cellulosome paradigm in an extreme alkaline environment. Microorganisms, 7(9), 347. https://doi.org/10.3390/microorganisms7090347

Ponsetto, P., Sasal, E.M., Mazzoli, R., Valetti, F., Gilardi, G., 2024. The potential of native and engineered Clostridia for biomass biorefining. Frontiers in Bioengineering and Biotechnology, 12, 1423935. https://doi.org/10.3389/fbioe.2024.1423935

Sharma, J., Kumar, V., Prasad, R., Gaur, N.A., 2022. Engineering of Saccharomyces cerevisiae as a consolidated bioprocessing host to produce cellulosic ethanol: Recent advancements and current challenges. Biotechnology Advances, 56, 107925. https://doi.org/10.1016/j.biotechadv.2022.107925

Stern, J., Moraïs, S., Lamed, R., Bayer, E.A., 2016. Adaptor scaffoldins: an original strategy for extended designer cellulosomes, inspired from nature. mBio, 7(2), e00083. https://doi.org/

Tsai, S., Oh, J., Singh, S., Chen, R., Chen, W., 2009. Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Applied and Environmental Microbiology, 75, 6087–6093. https://doi.org/10.1128/AEM.01538-09

Tsai, S., Goyal, G., Chen, W., 2010. Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production. Applied and Environmental Microbiology, 76. https://doi.org/10.1128/AEM.01777-10

Tsai, S.-L., DaSilva, N.A., Chen, W., 2013. Functional display of complex cellulosomes on the yeast surface via adaptive assembly. ACS Synthetic Biology, 2, 14–21. https://doi.org/10.1021/sb300047u

Vanderstraeten, J., da Fonseca, M.J.M., De Groote, P., Grimon, D., Gerstmans, H., Kahn, A., Moraïs, S., Bayer, E.A., Briers, Y., 2022a. Combinatorial assembly and optimisation of designer cellulosomes: a galactomannan case study. Biotechnology for Biofuels and Bioproducts, 15(1), 60. https://doi.org/10.1186/s13068-022-02158-2

Vanderstraeten, J., Lamote, B., da Fonseca, M.J.M., De Groote, P., Briers, Y., 2022b. Conversion of the free Cellvibrio japonicus xyloglucan degradation system to the cellulosomal mode. Applied Microbiology and Biotechnology, 106(17), 5495–5509. https://doi.org/10.1007/s00253-022-12072-0

Vazana, Y., Barak, Y., Unger, T., Peleg, Y., Shamshoum, M., Ben-Yehezkel, T., Mazor, Y., Shapiro, E., Lamed, R., Bayer, E.A., 2013. A synthetic biology approach for evaluating the functional contribution of designer cellulosome components to deconstruction of cellulosic substrates. Biotechnology for Biofuels, 6(1), 182. https://doi.org/10.1186/1754-6834-6-182

Vazana, Y., Moraïs, S., Barak, Y., Lamed, R., Bayer, E.A., 2010. Interplay between Clostridium thermocellum Family 48 and Family 9 cellulases in cellulosomal versus noncellulosomal states. Applied and Environmental Microbiology, 76. https://doi.org/10.1128/AEM.00009-10

Vodovnik, M., Duncan, S.H., Reid, M.D., Cantlay, L., Turner, K., Parkhill, J., et al., 2013. Correction: Expression of cellulosome components and type IV pili within the extracellular proteome of Ruminococcus flavefaciens 007. PLoS ONE, 8(12), 10.1371/annotation/fed83700-d3cd-428e-ae52-e60524c97529. https://doi.org/10.1371/annotation/fed83700-d3cd-428e-ae52-e60524c97529

Wen, Z., Li, Q., Liu, J., Jin, M., Yang, S., 2020. Consolidated bioprocessing for butanol production of cellulolytic Clostridia: development and optimization. Microbial Biotechnology, 13(2), 410–422. https://doi.org/10.1111/1751-7915.13478

Wen, F., Sun, J., Zhao, H., 2010. Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Applied and Environmental Microbiology, 76. https://doi.org/10.1128/AEM.01687-09

Willson, B.J., Kovács, K., Wilding-Steele, T., Markus, R., Winzer, K., Minton, N.P., 2016. Production of a functional cell wall-anchored minicellulosome by recombinant Clostridium acetobutylicum ATCC 824. Biotechnology for Biofuels, 9, 109. https://doi.org/10.1186/s13068-016-0523-7

Xin, F., Dong, W., Zhang, W., Ma, J., Jiang, M., 2019. Biobutanol production from crystalline cellulose through consolidated bioprocessing. Trends in Biotechnology, 37, 167–180. https://doi.org/10.1016/j.tibtech.2018.09.003

Ye, Y., Liu, H., Wang, Z., Qi, Q., Du, J., Tian, S., 2024. A cellulosomal yeast reaction system of lignin-degrading enzymes for cellulosic ethanol fermentation. Biotechnology Letters, 46(4), 531–543. https://doi.org/10.1007/s10529-024-03485-0

Downloads

Published

16.01.2025

How to Cite

Vodovnik, M. (2025). Designer cellulosomes – catalytic nanomachines with significant potential in biotechnology and circular economy. Acta Biologica Slovenica, 68(1), 118-125. https://doi.org/10.14720/abs.68.01.21452