The New Chinese Corpus of Literary Texts Litchi
DOI:
https://doi.org/10.4312/ala.10.2.65-81Keywords:
Chinese, corpus linguistics, building and using corpora, literary texts, LitchiAbstract
The aim of the article is to introduce the corpus of Chinese literary texts and to describe the process and design principles behind the corpus construction. The authors provide information regarding the reasoning behind the chosen structure and annotation of the corpus, and further discuss possibilities the corpus opens for linguistic research and language learning. The article provides several examples of how the corpus can be used at various levels of language research.
Downloads
References
Council of Europe. (2011). Common European framework of reference for languages: Learning, teaching, assessment. Cambridge, U.K: Cambridge University Press. https://rm.coe.int/1680459f97
Gajdoš, Ľ. (2019). Retrieving Linguistic Information from a Corpus on the Example of Negation in Chinese. Acta Linguistica Asiatica, 9(2), 103-115. https://doi.org/10.4312/ala.9.2.103-115 DOI: https://doi.org/10.4312/ala.9.2.103-115
Gajdoš, Ľ., Garabík, R., & Benická, J. (2016a). The New Chinese Webcorpus Hanku – Origin, Parameters, Usage. Studia Orientalia Slovaca, 15(1), 53–65.
Kilgarriff, A. et al. (2014). The Sketch Engine: Ten Years on. Lexicography, 1.1, 7-36. DOI: https://doi.org/10.1007/s40607-014-0009-9
Kilgarriff, A. (2009). Simple maths for keywords. In M. Mahlberg, V. González-Díaz & C. Smith (Eds.), Proceedings of Corpus Linguistics Conference CL2009. University of Liverpool, UK.
Lunde, K. (2009). CJKV Information Processing: Chinese, Japanese, Korean & Vietnamese Computing, 2nd edition. O'Reilly Media.
Rychlý, P. (2007). Manatee/Bonito-A Modular Corpus Manager. In P. Sojka & A. Horák (Eds.), RASLAN 2007 (pp. 65-70). Brno: Masaryk University.
Zhang, Y., & Clark, S. (2011). Syntactic Processing Using the Generalized Perceptron and Beam Search. Computational Linguistics, 37(1), 105-151. DOI: https://doi.org/10.1162/coli_a_00037
Published
Issue
Section
License
Copyright (c) 2020 Mateja Petrovčič, Radovan Garabík, Ľuboš Gajdoš
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.