Differences in post activation potentiation and post activation performance enhancement between flywheel and barbell squat protocols
DOI:
https://doi.org/10.52165/kinsi.29.1.5-29Keywords:
isoinertial, countermovement jump, eccentric overload, power-load profile, twitchAbstract
This study aimed to compare the post-activation potentiation (PAP) and post-activation potentiation performance enhancement (PAPE) response following the flywheel (FW) and barbell resistance protocols on subsequent evoked knee extensor muscle characteristics and countermovement jump (CMJ) height. The study used a randomized crossover design including nineteen physical education students (24.9 [2.6] years, 171.1 [6.9] cm, 66.9 [8.6] kg). The participants were divided into experienced (EX) and unexperienced (unEX) groups. They visited laboratory eight times and in randomized order performed the following tests: I) optimal FW load determination, II) optimal barbell load determination, III) control visit to determine twitch characteristics, IV) control visit to determine CMJ characteristics, V and VI) evoked contractions of the quadriceps femoris muscle after FW squat and barbell protocols, VII and VIII) CMJ testing after FW squat and barbell squat protocols. A mixed model ANOVA (factors load condition [control, FW, barbell], time [1-10 min] and experience) revealed changes in jump height, twitch amplitude, contraction time and half-relaxation time as a factor of time. Only minor differences in variables analyzed were found between EX and unEX participants and between load conditions. The prevalent observation is that the two loading conditions (FW vs. barbell) induced no different PAP/E responses. Presumably, because the intensity and the tempo of the two resistance exercise protocols were matched by the peak power load selection and coupled eccentric-concentric contractions.
Downloads
References
Aagaard, P., Simonsen, E. B., Andersen, J. L., Magnusson, S. P., Halkjær-Kristensen, J., & Dyhre-Poulsen, P. (2000). Neural inhibition during maximal eccentric and concentric quadriceps contraction: Effects of resistance training. Journal of Applied Physiology, 89(6), 2249–2257. https://doi.org/10.1152/jappl.2000.89.6.2249
Abbate, F., Sargeant, A. J., Verdijk, P. W. L., & De Haan, A. (2000). Effects of high-frequency initial pulses and posttetanic potentiation on power output of skeletal muscle. Journal of Applied Physiology, 88(1), 35–40. https://doi.org/10.1152/jappl.2000.88.1.35
Alcazar, J., Csapo, R., Ara, I., & Alegre, L. M. (2019). On the shape of the force-velocity relationship in skeletal muscles: The linear, the hyperbolic, and the double-hyperbolic. Frontiers in Physiology, 10, 769. https://doi.org/10.3389/fphys.2019.00769
Alway, S. E., Hughson, R. L., Green, H. J., Patla, A. E., & Frank, J. S. (1987). Twitch potentiation after fatiguing exercise in man. European Journal of Applied Physiology and Occupational Physiology, 56(4), 461–466. https://doi.org/10.1007/BF00417776
Amiridis, L. G., & et al. (1996). Co-activation & tension-regulating phenomena during isokinetic knee ext in sedentary & highly skilled humans. Eur. J. Appl. Physiol., 73, 149–156.
Armstrong, R., Baltzopoulos, V., Langan-Evans, C., Clark, D., Jarvis, J., Stewart, C., O’Brien, T. D., & O’Brien, T. D. (2022). Determining concentric and eccentric force – velocity profiles during squatting. European Journal of Applied Physiology, 122(3), 769–779. https://doi.org/10.1007/s00421-021-04875-2
Beato, M., Bigby, A. E. J., De Keijzer, K. L., Nakamura, F. Y., Coratella, G., & McErlain-Naylor, S. A. (2019). Post-activation potentiation effect of eccentric overload and traditional weightlifting exercise on jumping and sprinting performance in male athletes. PLoS ONE, 14(9), 1–13. https://doi.org/10.1371/journal.pone.0222466
Beato, M., de Keijzer, K. L., Fleming, A., Coates, A., La Spina, O., Coratella, G., & McErlain-Naylor, S. A. (2020). Post flywheel squat vs. flywheel deadlift potentiation of lower limb isokinetic peak torques in male athletes. Sports Biomechanics, August. https://doi.org/10.1080/14763141.2020.1810750
Beato, M., de Keijzer, K. L., Leskauskas, Z., Allen, W. J., Dello Iacono, A., & McErlain-Naylor, S. A. (2021). Effect of postactivation potentiation after medium vs. high inertia eccentric overload exercise on standing long jump, countermovement jump, and change of direction performance. Journal of Strength and Conditioning Research, 35(9), 2616–2621. https://doi.org/10.1519/JSC.0000000000003214
Beato, M., Mcerlain-Naylor, S. A., Halperin, I., & Iacono, A. D. (2020). Current Evidence and Practical Applications of Flywheel Eccentric Overload Exercises as Postactivation Potentiation Protocols: A Brief Review. International Journal of Sports Physiology and Performance, 15(2), 154–161. https://doi.org/10.1123/ijspp.2019-0476
Beato, M., Stiff, A., & Coratella, G. (2021). Effects of Postactivation Potentiation After an Eccentric Overload Bout on Countermovement Jump and Lower-Limb Muscle Strength. Journal of Strength and Conditioning Research, 35(7), 1825–1832. https://doi.org/10.1519/JSC.0000000000003005
Blazevich, A. J., & Babault, N. (2019). Post-activation Potentiation Versus Post-activation Performance Enhancement in Humans: Historical Perspective, Underlying Mechanisms, and Current Issues. Frontiers in Physiology, 10(Nov). https://doi.org/10.3389/fphys.2019.01359
Booth, J., McKenna, M. J., Ruell, P. A., Gwinn, T. H., Davis, G. M., Thompson, M. W., Harmer, A. R., Hunter, S. K., & Sutton, J. R. (1997). Impaired calcium pump function does not slow relaxation in human skeletal muscle after prolonged exercise. Journal of Applied Physiology, 83(2), 511–521. https://doi.org/10.1152/jappl.1997.83.2.511
Boullosa, D. (2021). Post-activation performance enhancement strategies in sport: A brief review for practitioners. Human Movement, 22(3), 101–109. https://doi.org/10.5114/hm.2021.103280
Chiu, L. Z. F., Fry, A. C., Weiss, L. W., Schilling, B. K., Brown, L. E., & Smith, S. L. (2003). Postactivation Potentiation Response in Athletic and Recreationally Trained Individuals. Journal of Strength and Conditioning Research, 17(4), 671–677. https://doi.org/10.1519/00124278-200311000-00008
Cook, C. J., Kilduff, L. P., Crewther, B. T., Beaven, M., & West, D. J. (2014). Morning based strength training improves afternoon physical performance in rugby union players. Journal of Science and Medicine in Sport, 17(3), 317–321. https://doi.org/10.1016/j.jsams.2013.04.016
de Keijzer, K. L., McErlain-Naylor, S. A., & Beato, M. (2020). Effect of Volume on Eccentric Overload–Induced Postactivation Potentiation of Jumps. International Journal of Sports Physiology and Performance, October, 1–6. https://doi.org/10.1123/ijspp.2019-0411
Enoka, R. M. (1996). Eccentric contractions require unique activation strategies by the nervous system. Journal of Applied Physiology, 81(6), 2339–2346. https://doi.org/10.1152/jappl.1996.81.6.2339
Ereline, J., Gapeyeva, H., & Pääsuke, M. (2011). Comparison of twitch contractile properties of plantarflexor muscles in nordic combined athletes, cross-country skiers, and sedentary men. European Journal of Sport Science, 11(1), 61–67. https://doi.org/10.1080/17461391.2010.481335
Giroux, C., Guilhem, G., Chollet, D., & Rabita, G. (2014). Muscle coordination in loaded squat jump. Computer Methods in Biomechanics and Biomedical Engineering, 17, 158–159. https://doi.org/10.1080/10255842.2014.931621
Gollnick, P. D., Korge, P., Karpakka, J., & Saltin, B. (1991). Elongation of skeletal muscle relaxation during exercise is linked to reduced calcium uptake by the sarcoplasmic reticulum in man. Acta Physiologica Scandinavica, 142(1), 135–136. https://doi.org/10.1111/j.1748-1716.1991.tb09139.x
Hamada, T., Sale, D. G., MacDougall, J. D., & Tarnopolsky, M. A. (2000). Postactivation potentiation, fiber type, and twitch contraction time in human knee extensor muscles. Journal of Applied Physiology, 88(6), 2131–2137. https://doi.org/10.1152/jappl.2000.88.6.2131
Herzog, W. (2018). Why are muscles strong, and why do they require little energy in eccentric action? Journal of Sport and Health Science, 7(3), 255–264. https://doi.org/10.1016/j.jshs.2018.05.005
Hessel, A. L., Lindstedt, S. L., & Nishikawa, K. C. (2017). Physiological mechanisms of eccentric contraction and its applications: A role for the giant titin protein. Frontiers in Physiology, 8, 70. https://doi.org/10.3389/fphys.2017.00070
Jaric, S., & Markovic, G. (2009). Leg muscles design: The maximum dynamic output hypothesis. Medicine and Science in Sports and Exercise, 41(4), 780–787. https://doi.org/10.1249/MSS.0b013e31818f2bfa
Jaric, S., & Markovic, G. (2013). Body mass maximizes power output in human jumping: A strength-independent optimum loading behavior. European Journal of Applied Physiology, 113(12), 2913–2923. https://doi.org/10.1007/s00421-013-2707-7
Kawamori, N., & Haff, G. G. (2004). The optimal training load for the development of muscular power. Journal of Strength and Conditioning Research, 18(3), 675–684. https://doi.org/10.1519/1533-4287(2004)18<675:TOTLFT>2.0.CO;2
Kitai, T. A., & Sale, D. G. (1989). Specificity of joint angle in isometric training. European Journal of Applied Physiology and Occupational Physiology, 58(7), 744–748. https://doi.org/10.1007/BF00637386
Kotrlik, J. W., & Williams, H. A. (2003). The Incorporation of Effect Size. Information Technology, Learning, and Performance Journal, 21(1), 1–7.
Linthorne, N. P. (2001). Analysis of standing vertical jumps using a force platform. American Journal of Physiology, 69(11), 1198–1204. https://doi.org/10.1119/1.1397460
Loturco, I., Iacono, A. D., Nakamura, F. Y., Freitas, T. T., & Boullosa, D. (2022). The Optimum Power Load: A Simple and Powerful Tool for Testing and Training. International Journal of Sports Physiology and Performance, 17(2), 151–159. https://doi.org/10.1123/ijspp.2021-0288
Mandic, R., Jakovljevic, S., & Jaric, S. (2015). Effects of countermovement depth on kinematic and kinetic patterns of maximum vertical jumps. J Electromyogr Kinesiol, 25(2), 265–272. https://doi.org/10.1002/cncr.27633.Percutaneous
Maroto-Izquierdo, S., Bautista, I. J., & Rivera, F. M. (2020). Post-activation performance enhancement (PAPE) after a single bout of high-intensity flywheel resistance training. Biol Sport, 37(4), 343–350. https://doi.org/10.5114/biolsport.2020.96318
McErlain Naylor, S. A., Beato, M., Mcerlain-naylor, S. A., & Beato, M. (2021). Post flywheel squat potentiation of vertical and horizontal ground reaction force parameters during jumps and changes of direction. Sports, 9(5), 1–9. https://doi.org/10.3390/sports9010005
Morin, J. B., Samozino, P., Bonnefoy, R., Edouard, P., & Belli, A. (2010). Direct measurement of power during one single sprint on treadmill. Journal of Biomechanics, 43(10), 1970–1975. https://doi.org/10.1016/j.jbiomech.2010.03.012
Munger, C. N., Archer, D. C., Leyva, W. D., Wong, M. A., Coburn, J. W., Costa, P. B., & Brown, L. E. (2017). Acute Effects of Eccentric Overload on Concentric Front Squat Performance. Journal of Strength and Conditioning Research, 31(5), 1192–1197.
Muñoz-López, A., Flor, P., Sañudo, B., Pecci, J., Carmona, J., & Pozzo, M. (2021). The Maximum Flywheel Load: A Novel Index to Monitor Loading Intensity of Flywheel Devices. Sensors, 21, 8124. https://doi.org/doi.org/10.3390/s21238124
Pandy, M. G., & Zajac, F. E. (1991). Optimal muscular coordination strategies for jumping. Journal of Biomechanics, 24(1), 1–10. https://doi.org/10.1016/0021-9290(91)90321-D
Pazin, N., Berjan, B., Nedeljkovic, A., Markovic, G., & Jaric, S. (2013). Power output in vertical jumps: Does optimum loading depend on activity profiles? European Journal of Applied Physiology, 113(3), 577–589. https://doi.org/10.1007/s00421-012-2464-z
Peterson, C. R. (2009). Acute neural adaptations to resistance training performed with low and high rates of muscle activation. Dissertation Abstracts International: Section B: The Sciences and Engineering, 70(5-B), 2746. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3356271%5Cnhttp://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=psyc6&NEWS=N&AN=2009-99220-001
Rassier, D. E., & MacIntosh, B. R. (2000). Coexistence of potentiation and fatigue in skeletal muscle. Brazilian Journal of Medical and Biological Research, 33(5), 499–508. https://doi.org/10.1590/S0100-879X2000000500003
Sabido, R., Hernández-davó, J. L., Capdepon, L., & Tous-fajardo, J. (2020). How Are Mechanical, Physiological, and Perceptual Variables Affected by the Rest Interval Between Sets During a Flywheel Resistance Session? Frontiers in Physiology, 11(663), 1–8. https://doi.org/10.3389/fphys.2020.00663
Sale, D. G. (2002). Postactivation potentiation: role in human performance. Exercise and Sport Sciences Reviews, 30(3), 138–143. https://doi.org/10.1136/bjsm.2004.003392
Samozino, P., Rabita, G., Dorel, S., Slawinski, J., Peyrot, N., Saez de Villarreal, E., & Morin, J. B. (2016). A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scandinavian Journal of Medicine and Science in Sports, 26(6), 648–658. https://doi.org/10.1111/sms.12490
Sañudo, B., de Hoyo, M., Haff, G. G., & Muñoz-López, A. (2020). Article influence of strength level on the acute post-activation performance enhancement following flywheel and free weight resistance training. Sensors (Switzerland), 20(24), 1–11. https://doi.org/10.3390/s20247156
Šarabon, N., Rosker, J., Fruhmann, H., Burggraf, S., Loefler, S., & Kern, H. (2013). Reliability of maximal voluntary contraction related parameters measured by a novel portable isometric knee dynamometer. Physikalische Medizin Rehabilitationsmedizin Kurortmedizin, 23(1), 22–27. https://doi.org/10.1055/s-0032-1331190
Seitz, L. B., de Villarreal, E. S., & Haff, G. G. (2014). The temporal profile of postactivation potentiation is related to strength level. Journal of Strength and Conditioning Research, 28(3), 706–715. https://doi.org/https://doi.org/10.1519/JSC.0b013e3182a73ea3
Seitz, L. B., & Haff, G. G. (2016). Factors Modulating Post-Activation Potentiation of Jump, Sprint, Throw, and Upper-Body Ballistic Performances: A Systematic Review with Meta-Analysis. Sports Medicine, 46(2), 231–240. https://doi.org/10.1007/s40279-015-0415-7
Spudić, D., Cvitkovič, R., & Šarabon, N. (2021). Assessment and Evaluation of Force – Velocity Variables in Flywheel Squats: Validity and Reliability of Force Plates, A Linear Encoder Sensor, and A Rotary Encoder Sensor. Appl. Sci., 11(22), 10541.
Spudić, D., Smajla, D., Burnard, M. D., & Šarabon, N. (2021). Muscle Activation Sequence in Flywheel Squats. Int. J. Environ. Res. Public Health, 18(6), 3168. https://doi.org/doi.org/10.3390/ijerph18063168
Spudić, D., Smajla, D., & Šarabon, N. (2020). Validity and reliability of force–velocity outcome parameters in flywheel squats. Journal of Biomechanics, 107, 109824. https://doi.org/https://doi.org/10.1016/j.jbiomech.2020.109824
Strojnik, V., & Komi, P. V. (1998). Neuromuscular fatigue after maximal stretch-shortening cycle exercise. Journal of Applied Physiology, 84(1), 344–350. https://doi.org/10.1152/jappl.1998.84.1.344
Suzovic, D., Markovic, G., Pasic, M., & Jaric, S. (2013). Optimum load in various vertical jumps support the maximum dynamic output hypothesis. International Journal of Sports Medicine, 34(11), 1007–1014. https://doi.org/10.1055/s-0033-1337942
Timon, R., Allemano, S., Camacho-Cardenosa, M., Camacho-Cardenosa, A., Martinez-Guardado, I., & Olcina, G. (2019). Post‐Activation Potentiation on Squat Jump Following Two Different Protocols: Traditional vs. Inertial Flywheel. Journal of Human Kinetics, 69(September), 239–247. https://doi.org/10.2478/hukin
van den Tillaar, R., Andersen, V., & Saeterbakken, A. H. (2019). Comparison of muscle activation and kinematics during free-weight back squats with different loads. PLoS ONE, 14(5), 1–13. https://doi.org/10.1371/journal.pone.0217044
Vargas-Molina, S., Salgado-Razirez, U., Chulvi-Medrano, I., Carbone, L., Maroto-Izquierdo, S., & Benittez-Porres, J. (2021). Comparison of post-activation performance enhancement (PAPE) after isometric and isotonic exercise on vertical jump performance. PLoS ONE, 16(12), e0260866. https://doi.org/10.1371/journal.pone.0260866
Xenofondos, A., Patikas, D., Koceja, D. M., Behdad, T., Bassa, E., Kellis, E., & Kotzamanidis, C. (2015). Post-activation potentiation: The neural effects of post-activation depression. Muscle and Nerve, 52(2), 252–259. https://doi.org/10.1002/mus.24533
Zacca, R., de Jesus, K., Cuenca-Fernández, F., de Jesus, K., Mourão, L., Vilas-Boas, J. P., Arellano, R., Fernandes, R. J., & López-Contreras, G. (2018). Eccentric flywheel post-activation potentiation influences swimming start performance kinetics. Journal of Sports Sciences, 37(4), 443–451. https://doi.org/10.1080/02640414.2018.1505183
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Darjan Spudić, Julija Dakskobler, Igor Štirn
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.