Effects of two different flywheel resistance training protocols on explosive knee extension strength: a pilot randomized study

Flywheel resistance training

Authors

  • Darjan Spudić Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
  • Benjamin J. Narang Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia; Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
  • Primož Pori Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
  • Vojko Strojnik Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
  • Nejc Šarabon Faculty of Health Sciences, University ofPrimorska, Izola, Slovenia; Human Health Department, InnoRenew CoE, Izola, Slovenia; Laboratory for Motor Control and Motor Behavior, Science to Practice Ltd., Ljubljana, Slovenia
  • Igor Štirn Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia

DOI:

https://doi.org/10.52165/kinsi.29.3.5-25

Keywords:

isoinertial, torque, explosive, moment, muscle adaptation, EMG

Abstract

The aim of our study was to evaluate differences in explosive isometric knee extension strength adaptations after a flywheel squat resistance training programs performed under low- and high-load conditions. Twenty physically active adults were randomly assigned to an individually allocated high- or low-load eight-week training intervention. Isometric knee extension RTD and RER variables were assessed pre and post eight-week intervention. Statistically significant improvements in the RTD slope variables (100 and 200 ms time intervals after the onset of torque rise; p < 0,05) were observed, regardless of the training load used. Normalized averaged vastus lateralis and rectus femoris electromyography (EMG) amplitude decreased in the intervals 80 ms before, and 75, 100 and 200 ms after the onset of activation (all p < 0,05), regardless of the training group. Our results suggest that high- and low-load resistance flywheel training interventions induce similar increases in explosive knee extension strength, accompanied with a decrease in time-analog normalized EMG signal amplitude.

Downloads

Download data is not yet available.

References

Aagaard, P., Simonsen, E. B., Andersen, J. L., Magnusson, P., & Dyhre-Poulsen, P. (2002). Increased rate of force development and neural drive of human skeletal muscle following resistance training. Journal of Applied Physiology, 93(4), 1318–1326. https://doi.org/10.1152/japplphysiol.00283.2002

Aagaard, P., Simonsen, E. B., Andersen, J. L., Magnusson, S. P., Halkjær-Kristensen, J., & Dyhre-Poulsen, P. (2000). Neural inhibition during maximal eccentric and concentric quadriceps contraction: Effects of resistance training. Journal of Applied Physiology, 89(6), 2249–2257. https://doi.org/10.1152/jappl.2000.89.6.2249

Alcazar, J., Csapo, R., Ara, I., & Alegre, L. M. (2019). On the shape of the force-velocity relationship in skeletal muscles: The linear, the hyperbolic, and the double-hyperbolic. Frontiers in Physiology, 10, 769. https://doi.org/10.3389/fphys.2019.00769

Amiridis, L. G., & et al. (1996). Co-activation & tension-regulating phenomena during isokinetic knee ext in sedentary & highly skilled humans. Eur. J. Appl. Physiol., 73, 149–156.

Behm, D. G., & Sale, D. G. (1993). Intended rather than actual movement velocity determines velocity-specific training response. Journal of Applied Physiology, 74(1), 359–368. https://doi.org/10.1152/jappl.1993.74.1.359

Conrad, B., Benecke, R., & Goehmann, M. (1983). Premovement silent period in fast movement initiation. Experimental Brain Research, 51(2), 310–313. https://doi.org/10.1007/BF00237208

Coratella, G., Chemello, A., & Schena, F. (2016). Muscle damage and repeated bout effect induced by enhanced eccentric squats. The Journal of Sports Medicine and Physical Fitness, 56(12), 1540–1546.

Cormie, P., McGuigan, M., & Newton, R. (2011). Developing Maximal Neuromuscular Power, Part 2. Sports Medicine, 41(2), 125–146.

de Haan, A. (1998). Force-velocity characteristics of insitu rat medial gastrocnemius muscle. Experimental Physiology, 83, 77–84.

Del Vecchio, A., Casolo, A., Dideriksen, J. L., Aagaard, P., Felici, F., Falla, D., & Farina, D. (2022). Lack of increased rate of force development after strength training is explained by specific neural, not muscular, motor unit adaptations. Journal of Applied Physiology, 132(1), 84–94. https://doi.org/10.1152/japplphysiol.00218.2021

Del Vecchio, A., Casolo, A., Negro, F., Scorcelletti, M., Bazzucchi, I., Enoka, R., Felici, F., & Farina, D. (2019). The increase in muscle force after 4 weeks of strength training is mediated by adaptations in motor unit recruitment and rate coding. Journal of Physiology, 597(7), 1873–1887. https://doi.org/10.1113/JP277250

Duchateau, J., & Baudry, S. (2014). Maximal discharge rate of motor units determines the maximal rate of force development during ballistic contractions in human. Frontiers in Human Neuroscience, 8, 234. https://doi.org/10.3389/fnhum.2014.00234

Elgueta-cancino, E., Evans, E., Martinez-valdes, E., & Falla, D. (2022). The Effect of Resistance Training on Motor Unit Firing Properties : A Systematic Review and Meta-Analysis. February. https://doi.org/10.3389/fphys.2022.817631

Hermens, H. J., Freriks, B., Disselhorst-Klug, C., & Rau, G. (2000). Development of recommendations for SEMG sensors and sensor placement procedures. Journal of Electromyography and Kinesiology, 10(5), 361–374.

Hernández-Davó, J. L., & Sabido, R. (2014). Rate of force development; Reliability, improvements and influence on performance. European Journal of Human Movement, 33(December), 46–69.

Hopkins, W. G. (2000). Measures of Reliability in Sports Medicine and Science. Sports Medicine, 30(1), 1–15. https://doi.org/10.2165/00007256-200030010-00001.

Hoyo, M., Sañudo, B., Carrasco, L., Domínguez-Cobo, S., Mateo-Cortes, J., Cadenas-Sánchez, M. M., & Nimphius, S. (2015). Effects of Traditional Versus Horizontal Inertial Flywheel Power Training on Common Sport-Related Tasks. Journal of Human Kinetics, 47(1), 155–167. https://doi.org/10.1515/hukin-2015-0071

Kamen, G., & Knight, C. A. (2004). Training-related adaptations in motor unit discharge rate in young and older adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 59(12), 1334–1338. https://doi.org/10.1093/gerona/59.12.1334

Koo, T. K., & Li, M. Y. (2016). A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. Journal of Chiropractic Medicine, 15(2), 155–163. https://doi.org/10.1016/j.jcm.2016.02.012

Kotrlik, J. W., & Williams, H. A. (2003). The Incorporation of Effect Size. Information Technology, Learning, and Performance Journal, 21(1), 1–7.

Maffiuletti, N. A., Aagaard, P., Blazevich, A. J., Folland, J., Tillin, N., & Duchateau, J. (2016). Rate of force development: physiological and methodological considerations. European Journal of Applied Physiology, 116(6), 109–1116. https://doi.org/10.1007/s00421-016-3346-6

Mangine, G. T., Hoffman, J. R., Wang, R., Gonzalez, A. M., Townsend, J. R., Wells, A. J., Jajtner, A. R., Beyer, K. S., Boone, C. H., Miramonti, A. A., LaMonica, M. B., Fukuda, D. H., Ratamess, N. A., & Stout, J. R. (2016). Resistance training intensity and volume affect changes in rate of force development in resistance-trained men. European Journal of Applied Physiology, 116(11–12), 2367–2374. https://doi.org/10.1007/s00421-016-3488-6

Martinez-Aranda, L. M., & Fernandez-Gonzalo, R. (2017). Effects of inertial setting on power, force, work, and eccentric overload during flywheel resistance exercise in women and men. Journal of Strength and Conditioning Research, 31(6), 1653–1661. https://doi.org/10.1519/JSC.0000000000001635

McErlain-Naylor, S. A., & Beato, M. (2021). Concentric and eccentric inertia–velocity and inertia–power relationships in the flywheel squat. Journal of Sports Sciences, 39(10), 1136–1143. https://doi.org/10.1080/02640414.2020.1860472

Nosaka, K., Sakamoto, K. E. I., Newton, M., & Sacco, P. (2001). How long does the protective effect on eccentric exercise-induced muscle damage last? MEDICINE & SCIENCE IN SPORTS & EXERCISE, 33, 1490–1495.

Oliveira, A. S., Corvino, R. B., Caputo, F., Aagaard, P., & Denadai, B. S. (2016). Effects of fast-velocity eccentric resistance training on early and late rate of force development. European Journal of Sport Science, 16(2), 199–205. https://doi.org/10.1080/17461391.2015.1010593

Peñailillo, L., Blazevich, A., Numazawa, H., & Nosaka, K. (2015). Rate of force development as a measure of muscle damage. Scandinavian Journal of Medicine and Science in Sports, 25(3), 417–427. https://doi.org/10.1111/sms.12241

Raya-González, J., Castillo, D., de Keijzer, K. L., & Beato, M. (2021). The effect of a weekly flywheel resistance training session on elite U-16 soccer players’ physical performance during the competitive season. A randomized controlled trial [published online ahead of print, 2021 Jan 5]. Research in Sports Medicine, 00(00), 1–15. https://doi.org/10.1080/15438627.2020.1870978

Ricard, M. D., Ugrinowitsch, C., Parcell, A. C., Hilton, S., Rubley, M. D., Sawyer, R., & Poole, C. R. (2005). Effects of rate of force development on EMG amplitude and frequency. International Journal of Sports Medicine, 26(1), 66–70. https://doi.org/10.1055/s-2004-817856

Rodriguez-Lopez, C., Alcazar, J., Sanchez-Martin, C., Baltasar-Fernandez, I., Ara, I., Csapo, R., & Alegre, L. M. (2022). Neuromuscular adaptations after 12 weeks of light- vs. heavy-load power-oriented resistance training in older adults. Scandinavian Journal of Medicine and Science in Sports, 32(2), 324–337. https://doi.org/10.1111/sms.14073

Rodríguez-Rosell, D., Pareja-Blanco, F., Aagaard, P., & González-Badillo, J. J. (2018). Physiological and methodological aspects of rate of force development assessment in human skeletal muscle. Clinical Physiology and Functional Imaging, 38(5), 743–762. https://doi.org/10.1111/cpf.12495

Sabido, R., Hernández-davó, J. L., Capdepon, L., & Tous-fajardo, J. (2020). How Are Mechanical, Physiological, and Perceptual Variables Affected by the Rest Interval Between Sets During a Flywheel Resistance Session? Frontiers in Physiology, 11(663), 1–8. https://doi.org/10.3389/fphys.2020.00663

Sagelv, E. H., Pedersen, S., Nilsen, L. P. R., Casolo, A., Welde, B., Randers, M. B., & Pettersen, S. A. (2020). Flywheel squats versus free weight high load squats for improving high velocity movements in football. A randomized controlled trial. BMC Sports Science, Medicine and Rehabilitation, 12(1), 1–14. https://doi.org/10.1186/s13102-020-00210-y

Sale, D. G. (1988). Neural adaptation to resistance training. Medicine and Science in Sports and Exercise, 20(5), 135–145.

Samozino, P., Morin, J. B., Hintzy, F. F., & Belli, A. (2010). Jumping ability: A theoretical integrative approach. Journal of Theoretical Biology, 264(1), 11–18. https://doi.org/10.1016/j.jtbi.2010.01.021

Šarabon, N., Čeh, T., Kozinc, Ž., & Smajla, D. (2020). Adapted protocol of rate of force development and relaxation scaling factor for neuromuscular assessment in patients with knee osteoarthritis. Knee, 27(6), 1697–1707. https://doi.org/10.1016/j.knee.2020.09.023

Sousa, A. S. P., & Tavares, J. M. R. S. (2012). Surface electromyographic amplitude normalization methods: A review. In H. Takada (Ed.), Electromyography: New Developments, Procedures, and Applications. Nova Science Publishers, Inc. https://repositorio-aberto.up.pt/bitstream/10216/64430/2/67854.pdf

Spudić, D., Cvitkovič, R., & Šarabon, N. (2021). Assessment and Evaluation of Force – Velocity Variables in Flywheel Squats: Validity and Reliability of Force Plates, A Linear Encoder Sensor, and A Rotary Encoder Sensor. Appl. Sci., 11(22), 10541.

Spudić, D., Smajla, D., & Šarabon, N. (2020a). Intra-session reliability of electromyographic measurements in flywheel squats. PLoS ONE, 15(2), e0243090. https://doi.org/10.1371/journal.pone.0243090

Spudić, D., Smajla, D., & Šarabon, N. (2020b). Validity and reliability of force–velocity outcome parameters in flywheel squats. Journal of Biomechanics, 107, 109824. https://doi.org/https://doi.org/10.1016/j.jbiomech.2020.109824

Strojnik, V., & Komi, P. V. (1998). Neuromuscular fatigue after maximal stretch-shortening cycle exercise. Journal of Applied Physiology, 84(1), 344–350. https://doi.org/10.1152/jappl.1998.84.1.344

Suter, E., & Herzog, W. (2001). Effect of number of stimuli and timing of twitch application on variability in interpolated twitch torque. Journal of Applied Physiology, 90(3), 1036–1040. https://doi.org/10.1152/jappl.2001.90.3.1036

Tesch, P. A., Ekberg, A., Lindquist, D., & Trieschmann, J. (2004). Muscle hypertrophy following 5-week resistance training using a non-gravity-dependent exercise system. Acta Physiologica Scandinavica, 180(1), 89–98.

Van Cutsem, M., & Duchateau, J. (2005). Preceding muscle activity influences motor unit discharge and rate of torque development during ballistic contractions in humans. Journal of Physiology, 562(2), 635–644. https://doi.org/10.1113/jphysiol.2004.074567

Viitasalo, J. T. (1982). Effects of pretension on isometric force production. International Journal of Sports Medicine, 3(3), 149–152. https://doi.org/10.1055/s-2008-1026079

Walter, C. B. (1989). Voluntary control of agonist premotor silence preceding limb movements of maximal effort. Perceptual and Motor Skills, 69, 819–826.

Warren, G. L., Ingalls, C. P., Lowe, D. A., & Armstrong, R. B. (2002). What mechanisms contribute to the strength loss that occurs during and in the recovery from skeletal muscle injury? Journal of Orthopaedic and Sports Physical Therapy, 32(2), 58–64. https://doi.org/10.2519/jospt.2002.32.2.58

Wilson, G. J., & Murphy, A. J. (1996). The use of isometric tests of muscular function in athletic assessment. Sports Medicine, 22(1), 19–37. https://doi.org/10.2165/00007256-199622010-00003

Downloads

Published

2024-11-06

Issue

Section

Articles

How to Cite

Spudić, D., Narang, B. J., Pori, P., Strojnik, V., Šarabon, N., & Štirn, I. (2024). Effects of two different flywheel resistance training protocols on explosive knee extension strength: a pilot randomized study: Flywheel resistance training. Kinesiologia Slovenica: Scientific Journal on Sport, 29(3), 5-25. https://doi.org/10.52165/kinsi.29.3.5-25