Exploring novel approaches for quantifying levels of physical activity
DOI:
https://doi.org/10.52165/kinsi.30.1.120-126Keywords:
physical activity, public health, physical inactivity, objective measurements, subjective measurements, strategieAbstract
Physical inactivity worldwide poses a significant risk to public health. The use of modern technology-based methods for the evaluation and understanding of behaviours related to physical activity is essential for crafting interventions aimed at promoting a more active population. This scholarly article explores innovative methods for assessing physical activity levels, categorized into objective and subjective approaches. Objective techniques, including wearable activity monitors, mobile health apps, environmental sensors, and geospatial analysis, are crucial for generating reliable and valid data across different demographics. Conversely, subjective methods like self-reports and diaries, though useful for studying larger populations, offer less data reliability. The methods discussed in this study provide profound insights into the behaviors associated with physical activity and assist in devising strategies to counteract rising global inactivity.
Downloads
References
Armstrong, K., Rose, A., Peters, N., Long, J. A., McMurphy, S., & Shea, J. A. (2006). Distrust of the health care system and self-reported health in the United States. Journal of general internal medicine, 21(4), 292–297. https://doi.org/10.1111/j.1525-1497.2006.00396.x
Armstrong, N. in Welsman, J. R. (2006). The physical activity patterns of European youth with reference to methods of assessment. Sports Medicine, 36(12), 1067–1086.
Bates, N. A., Huffman, A., Goodyear, E., Nagai, T., Rigamonti, L., Breuer, L., Holmes, B. D., & Schilaty, N. D. (2023). Physical clinical care and artificial-intelligence-guided core resistance training improve endurance and
patient-reported outcomes in subjects with lower back pain. Clinical biomechanics (Bristol, Avon), 103, 105902. https://doi.org/10.1016/j.clinbiomech.2023.105902
Biró, A., Szilágyi, S. M., Szilágyi, L., Martín-Martín, J., & Cuesta-Vargas, A. I. (2023). Machine Learning on
Prediction of Relative Physical Activity Intensity Using Medical Radar Sensor and 3D Accelerometer. Sensors (Basel, Switzerland), 23(7), 3595. https://doi.org/10.3390/s23073595
Conner, M., in Norman, P. (2017). Health behaviour: Current issues and challenges. Psychology in Health, 32(8), 895–906. https://doi.org/10.1080/08870446.2017.1336240
Evenson, K. R., Goto, M. M., & Furberg, R. D. (2015). Systematic review of the validity and reliability of
consumer-wearable activity trackers. International Journal of Behavioral Nutrition and Physical Activity, 12(1), 159. https://doi.org/10.1186/s12966-015-0314-1
Ferrari, G. L. de M., Kovalskys, I., Fisberg, M., Gómez, G., Rigotti, A., Sanabria, L. Y. C., García, M. C. Y.,
Torres, R. G. P., Herrera-Cuenca, M., Zimberg, I. Z., Guajardo, V., Pratt, M., Pires, C. A. M., Colley, R. C., &
Solé, D. (2020). Comparison of self-report versus accelerometer – measured physical activity and sedentary behaviors and their association with body composition in Latin American countries. PLOS ONE, 15(4), e0232420. https://doi.org/10.1371/journal.pone.0232420
Fuller, D., Anaraki, J. R., Simango, B., Rayner, M., Dorani, F., Bozorgi, A., Luan, H., & A Basset, F. (2021).
Predicting lying, sitting, walking and running using Apple Watch and Fitbit data. BMJ open sport & exercise medicine, 7(1), e001004. https://doi.org/10.1136/bmjsem-2020-001004
Fuller, D., Colwell, E., Low, J., Orychock, K., Tobin, M. A., Simango, B., Buote, R., van Heerden, D., Luan, H.,
Cullen, K., Slade, L., & Taylor, N. G. A. (2020). Reliability and Validity of Commercially Available Wearable
Devices for Measuring Steps, Energy Expenditure, and Heart Rate: Systematic Review. JMIR MHealth and
UHealth, 8(9), e18694. https://doi.org/10.2196/18694
Haskell, W. L., Lee, I. M., Pate, R. R., Powell, K. E., Blair, S. N., Franklin, B. A., Macera, C.A., Heath, G.W.,
Thompson, P.D. in Bauman, A. (2007). Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation, 116(9), 1081.
Jørgensen, L. B., Bricca, A., Bernhardt, A., Juhl, C. B., Tang, L. H., Mortensen, S. R., Eriksen, J. A., Walløe, S.,
& Skou, S. T. (2022). Objectively measured physical activity levels and adherence to physical activity guidelines in people with multimorbidity-A systematic review and meta-analysis. PloS one, 17(10), e0274846.
https://doi.org/10.1371/journal.pone.0274846
Kamel Boulos, M. N., & Koh, K. (2021). Smart city lifestyle sensing, big data, geo-analytics and intelligence for
smarter public health decision-making in overweight, obesity and type 2 diabetes prevention: the research we
should be doing. International Journal of Health Geographics, 20(1), 12. https://doi.org/10.1186/s12942-021-00266-0
Leon, A. S. in Sanchez, O. A. (2001). Response of blood lipids to exercise training alone or combined with dietary
intervention. Medicine & Science in Sports & Exercise, 33(6), S502-S515.
Mark, A. E., in Janssen, I. (2008). Dose-response relation between physical activity and blood pressure in youth. Medicine and science in sports and exercise, 40(6), 1007-1012.
O’Donoghue, G., Kennedy, A., Puggina, A., Aleksovska, K., Buck, C., Burns, C., Cardon, G., Carlin, A.,
Ciarapica, D., Colotto, M., Condello, G., Coppinger, T., Cortis, C., D’Haese, S., de Craemer, M., Di Blasio, A., Hansen, S., Iacoviello, L., Issartel, J., … Boccia, S. (2018). Socio-economic determinants of physical activity across the life course: A „DEterminants of DIet and Physical ACtivity“ (DEDIPAC) umbrella literature review.
PloS one, 13(1), e0190737. https://doi.org/10.1371/journal.pone.0190737
O’Neil, M. E., Fragala-Pinkham, M., Lennon, N., George, A., Forman, J., & Trost, S. G. (2016). Reliability and Validity of Objective Measures of Physical Activity in Youth With Cerebral Palsy Who Are Ambulatory. Physical Therapy, 96(1), 37–45. https://doi.org/10.2522/ptj.20140201
Petkovic, J., Duench, S., Trawin, J., Dewidar, O., Pardo Pardo, J., Simeon, R., DesMeules, M., Gagnon, D.,
Hatcher Roberts, J., Hossain, A., Pottie, K., Rader, T., Tugwell, P., Yoganathan, M., Presseau, J., & Welch, V.
(2021). Behavioural interventions delivered through interactive social media for health behaviour change, health
outcomes, and health equity in the adult population. The Cochrane database of systematic reviews, 5(5),
CD012932. https://doi.org/10.1002/14651858.CD012932.pub2
Rathbone, A. L., & Prescott, J. (2017). The Use of Mobile Apps and SMS Messaging as Physical and Mental
Health Interventions: Systematic Review. Journal of medical Internet research, 19(8), e295.
https://doi.org/10.2196/jmir.7740
Reilly, J. J., Penpraze, V., Hislop, J., Davies, G., Grant, S., & Paton, J. Y. (2008). Objective measurement of
physical activity and sedentary behaviour: review with new data. Archives of disease in childhood, 93(7), 614–
https://doi.org/10.1136/adc.2007.133272
Sabry, F., Eltaras, T., Labda, W., Alzoubi, K., & Malluhi, Q. (2022). Machine Learning for Healthcare Wearable Devices: The Big Picture. Journal of Healthcare Engineering, 2022, 4653923.
https://doi.org/10.1155/2022/4653923
Sasaki, J., Shindo, M., Tanaka, H., Ando, M., in Arakawa, K. (1987). A long-term aerobic exercise program
decreases the obesity index and increases the high density lipoprotein cholesterol concentration in obese children.
International journal of obesity, 11(4), 339-345.
Schoeppe, S., Alley, S., Van Lippevelde, W., Bray, N. A., Williams, S. L., Duncan, M. J., & Vandelanotte, C.
(2016). Efficacy of interventions that use apps to improve diet, physical activity and sedentary behaviour: a systematic review. The international journal of behavioral nutrition and physical activity, 13(1), 127.
https://doi.org/10.1186/s12966-016-0454-y
Shei, R.-J., Holder, I. G., Oumsang, A. S., Paris, B. A., & Paris, H. L. (2022). Wearable activity trackers-advanced technology or advanced marketing? European Journal of Applied Physiology, 122(9), 1975–1990.
https://doi.org/10.1007/s00421-022-04951-1
Storm, F. A., Heller, B. W., & Mazzà, C. (2015). Step detection and activity recognition accuracy of seven physical activity monitors. PloS one, 10(3), e0118723. https://doi.org/10.1371/journal.pone.0118723
Smith, M., Mavoa, S., Ikeda, E., Hasanzadeh, K., Zhao, J., Rinne, T. E., Donnellan, N., Kyttä, M., & Cui, J. (2022). Associations between Children’s Physical Activity and Neighborhood Environments Using GIS: A Secondary
Analysis from a Systematic Scoping Review. International Journal of Environmental Research and Public Health, 19(3), 1033. https://doi.org/10.3390/ijerph19031033
Tougri, G. in O'Loughlin, J. (2020). Intensity and frequency of physical activity and high blood pressure in
adolescents: A longitudinal study. The Journal of Clinical Hypertension, 22(2), 283-290.
https://onlinelibrary.wiley.com/doi/epdf/10.1111/jch.13806
Troiano, R. P., McClain, J. J., Brychta, R. J. in Chen, K. Y. (2014). Evolution of accelerometer methods for
physical activity research. British Journal of Sports Medicine.
Wellman, R. J., Sylvestre, M. P., Abi Nader, P., Chiolero, A., Mesidor, M., Dugas, E. N., Troped, P. J., Wilson, J. S., Matthews, C. E., Cromley, E. K., & Melly, S. J. (2010). The Built Environment and Location-Based Physical Activity. American Journal of Preventive Medicine, 38(4), 429–438.
https://doi.org/10.1016/j.amepre.2009.12.032
Wellman, R. J., Sylvestre, M., Abi Nader, P., Chiolero, A., Mesidor, M., Dugas, E. N., Tougri, G., & O’Loughlin, J. (2020). Intensity and frequency of physical activity and high blood pressure in adolescents: A longitudinal study. The Journal of Clinical Hypertension, 22(2), 283–290. https://doi.org/10.1111/jch.13806
Whalen, R. T., Carter, D. R., in Steele, C. R. (1988). Influence of physical activity on the regulation of bone
density. Journal of biomechanics, 21(10), 825-837.
Yoganathan, M., Presseau, J., & Welch, V. (2021). Behavioural interventions delivered through interactive social media for health behaviour change, health outcomes, and health equity in the adult population. The Cochrane database of systematic reviews, 5(5), CD012932. https://doi.org/10.1002/14651858.CD012932.pub
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Rimi Pavlović, Vedrana Sember, Vesna Štemberger

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.