Exploring novel approaches for quantifying levels of physical activity

Authors

  • Rimi Pavlović Pedagoška fakulteta, Univerza v Ljubljani
  • Vedrana Sember Fakulteta za šport, Univerza v Ljubljani
  • Vesna Štemberger Pedagoška fakulteta, Univerza v Ljubljani

DOI:

https://doi.org/10.52165/kinsi.30.1.120-126

Keywords:

physical activity, public health, physical inactivity, objective measurements, subjective measurements, strategie

Abstract

Physical inactivity worldwide poses a significant risk to public health. The use of modern technology-based methods for the evaluation and understanding of behaviours related to physical activity is essential for crafting interventions aimed at promoting a more active population. This scholarly article explores innovative methods for assessing physical activity levels, categorized into objective and subjective approaches. Objective techniques, including wearable activity monitors, mobile health apps, environmental sensors, and geospatial analysis, are crucial for generating reliable and valid data across different demographics. Conversely, subjective methods like self-reports and diaries, though useful for studying larger populations, offer less data reliability. The methods discussed in this study provide profound insights into the behaviors associated with physical activity and assist in devising strategies to counteract rising global inactivity.

Downloads

Download data is not yet available.

Author Biographies

  • Rimi Pavlović, Pedagoška fakulteta, Univerza v Ljubljani

    Didaktika športne vzgoje-asistent

  • Vedrana Sember, Fakulteta za šport, Univerza v Ljubljani

    Organizacijske enote:

    -Center za pedagoško dejavnost

    -Katedra za pedagogiko in didaktiko športa

    -Komisija za kadrovske zadeve pedagoških delavcev-član

  • Vesna Štemberger, Pedagoška fakulteta, Univerza v Ljubljani

    Didaktika športne vzgoje-nosilka predmetov

References

Armstrong, K., Rose, A., Peters, N., Long, J. A., McMurphy, S., & Shea, J. A. (2006). Distrust of the health care system and self-reported health in the United States. Journal of general internal medicine, 21(4), 292–297. https://doi.org/10.1111/j.1525-1497.2006.00396.x

Armstrong, N. in Welsman, J. R. (2006). The physical activity patterns of European youth with reference to methods of assessment. Sports Medicine, 36(12), 1067–1086.

Bates, N. A., Huffman, A., Goodyear, E., Nagai, T., Rigamonti, L., Breuer, L., Holmes, B. D., & Schilaty, N. D. (2023). Physical clinical care and artificial-intelligence-guided core resistance training improve endurance and

patient-reported outcomes in subjects with lower back pain. Clinical biomechanics (Bristol, Avon), 103, 105902. https://doi.org/10.1016/j.clinbiomech.2023.105902

Biró, A., Szilágyi, S. M., Szilágyi, L., Martín-Martín, J., & Cuesta-Vargas, A. I. (2023). Machine Learning on

Prediction of Relative Physical Activity Intensity Using Medical Radar Sensor and 3D Accelerometer. Sensors (Basel, Switzerland), 23(7), 3595. https://doi.org/10.3390/s23073595

Conner, M., in Norman, P. (2017). Health behaviour: Current issues and challenges. Psychology in Health, 32(8), 895–906. https://doi.org/10.1080/08870446.2017.1336240

Evenson, K. R., Goto, M. M., & Furberg, R. D. (2015). Systematic review of the validity and reliability of

consumer-wearable activity trackers. International Journal of Behavioral Nutrition and Physical Activity, 12(1), 159. https://doi.org/10.1186/s12966-015-0314-1

Ferrari, G. L. de M., Kovalskys, I., Fisberg, M., Gómez, G., Rigotti, A., Sanabria, L. Y. C., García, M. C. Y.,

Torres, R. G. P., Herrera-Cuenca, M., Zimberg, I. Z., Guajardo, V., Pratt, M., Pires, C. A. M., Colley, R. C., &

Solé, D. (2020). Comparison of self-report versus accelerometer – measured physical activity and sedentary behaviors and their association with body composition in Latin American countries. PLOS ONE, 15(4), e0232420. https://doi.org/10.1371/journal.pone.0232420

Fuller, D., Anaraki, J. R., Simango, B., Rayner, M., Dorani, F., Bozorgi, A., Luan, H., & A Basset, F. (2021).

Predicting lying, sitting, walking and running using Apple Watch and Fitbit data. BMJ open sport & exercise medicine, 7(1), e001004. https://doi.org/10.1136/bmjsem-2020-001004

Fuller, D., Colwell, E., Low, J., Orychock, K., Tobin, M. A., Simango, B., Buote, R., van Heerden, D., Luan, H.,

Cullen, K., Slade, L., & Taylor, N. G. A. (2020). Reliability and Validity of Commercially Available Wearable

Devices for Measuring Steps, Energy Expenditure, and Heart Rate: Systematic Review. JMIR MHealth and

UHealth, 8(9), e18694. https://doi.org/10.2196/18694

Haskell, W. L., Lee, I. M., Pate, R. R., Powell, K. E., Blair, S. N., Franklin, B. A., Macera, C.A., Heath, G.W.,

Thompson, P.D. in Bauman, A. (2007). Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation, 116(9), 1081.

Jørgensen, L. B., Bricca, A., Bernhardt, A., Juhl, C. B., Tang, L. H., Mortensen, S. R., Eriksen, J. A., Walløe, S.,

& Skou, S. T. (2022). Objectively measured physical activity levels and adherence to physical activity guidelines in people with multimorbidity-A systematic review and meta-analysis. PloS one, 17(10), e0274846.

https://doi.org/10.1371/journal.pone.0274846

Kamel Boulos, M. N., & Koh, K. (2021). Smart city lifestyle sensing, big data, geo-analytics and intelligence for

smarter public health decision-making in overweight, obesity and type 2 diabetes prevention: the research we

should be doing. International Journal of Health Geographics, 20(1), 12. https://doi.org/10.1186/s12942-021-00266-0

Leon, A. S. in Sanchez, O. A. (2001). Response of blood lipids to exercise training alone or combined with dietary

intervention. Medicine & Science in Sports & Exercise, 33(6), S502-S515.

Mark, A. E., in Janssen, I. (2008). Dose-response relation between physical activity and blood pressure in youth. Medicine and science in sports and exercise, 40(6), 1007-1012.

O’Donoghue, G., Kennedy, A., Puggina, A., Aleksovska, K., Buck, C., Burns, C., Cardon, G., Carlin, A.,

Ciarapica, D., Colotto, M., Condello, G., Coppinger, T., Cortis, C., D’Haese, S., de Craemer, M., Di Blasio, A., Hansen, S., Iacoviello, L., Issartel, J., … Boccia, S. (2018). Socio-economic determinants of physical activity across the life course: A „DEterminants of DIet and Physical ACtivity“ (DEDIPAC) umbrella literature review.

PloS one, 13(1), e0190737. https://doi.org/10.1371/journal.pone.0190737

O’Neil, M. E., Fragala-Pinkham, M., Lennon, N., George, A., Forman, J., & Trost, S. G. (2016). Reliability and Validity of Objective Measures of Physical Activity in Youth With Cerebral Palsy Who Are Ambulatory. Physical Therapy, 96(1), 37–45. https://doi.org/10.2522/ptj.20140201

Petkovic, J., Duench, S., Trawin, J., Dewidar, O., Pardo Pardo, J., Simeon, R., DesMeules, M., Gagnon, D.,

Hatcher Roberts, J., Hossain, A., Pottie, K., Rader, T., Tugwell, P., Yoganathan, M., Presseau, J., & Welch, V.

(2021). Behavioural interventions delivered through interactive social media for health behaviour change, health

outcomes, and health equity in the adult population. The Cochrane database of systematic reviews, 5(5),

CD012932. https://doi.org/10.1002/14651858.CD012932.pub2

Rathbone, A. L., & Prescott, J. (2017). The Use of Mobile Apps and SMS Messaging as Physical and Mental

Health Interventions: Systematic Review. Journal of medical Internet research, 19(8), e295.

https://doi.org/10.2196/jmir.7740

Reilly, J. J., Penpraze, V., Hislop, J., Davies, G., Grant, S., & Paton, J. Y. (2008). Objective measurement of

physical activity and sedentary behaviour: review with new data. Archives of disease in childhood, 93(7), 614–

https://doi.org/10.1136/adc.2007.133272

Sabry, F., Eltaras, T., Labda, W., Alzoubi, K., & Malluhi, Q. (2022). Machine Learning for Healthcare Wearable Devices: The Big Picture. Journal of Healthcare Engineering, 2022, 4653923.

https://doi.org/10.1155/2022/4653923

Sasaki, J., Shindo, M., Tanaka, H., Ando, M., in Arakawa, K. (1987). A long-term aerobic exercise program

decreases the obesity index and increases the high density lipoprotein cholesterol concentration in obese children.

International journal of obesity, 11(4), 339-345.

Schoeppe, S., Alley, S., Van Lippevelde, W., Bray, N. A., Williams, S. L., Duncan, M. J., & Vandelanotte, C.

(2016). Efficacy of interventions that use apps to improve diet, physical activity and sedentary behaviour: a systematic review. The international journal of behavioral nutrition and physical activity, 13(1), 127.

https://doi.org/10.1186/s12966-016-0454-y

Shei, R.-J., Holder, I. G., Oumsang, A. S., Paris, B. A., & Paris, H. L. (2022). Wearable activity trackers-advanced technology or advanced marketing? European Journal of Applied Physiology, 122(9), 1975–1990.

https://doi.org/10.1007/s00421-022-04951-1

Storm, F. A., Heller, B. W., & Mazzà, C. (2015). Step detection and activity recognition accuracy of seven physical activity monitors. PloS one, 10(3), e0118723. https://doi.org/10.1371/journal.pone.0118723

Smith, M., Mavoa, S., Ikeda, E., Hasanzadeh, K., Zhao, J., Rinne, T. E., Donnellan, N., Kyttä, M., & Cui, J. (2022). Associations between Children’s Physical Activity and Neighborhood Environments Using GIS: A Secondary

Analysis from a Systematic Scoping Review. International Journal of Environmental Research and Public Health, 19(3), 1033. https://doi.org/10.3390/ijerph19031033

Tougri, G. in O'Loughlin, J. (2020). Intensity and frequency of physical activity and high blood pressure in

adolescents: A longitudinal study. The Journal of Clinical Hypertension, 22(2), 283-290.

https://onlinelibrary.wiley.com/doi/epdf/10.1111/jch.13806

Troiano, R. P., McClain, J. J., Brychta, R. J. in Chen, K. Y. (2014). Evolution of accelerometer methods for

physical activity research. British Journal of Sports Medicine.

Wellman, R. J., Sylvestre, M. P., Abi Nader, P., Chiolero, A., Mesidor, M., Dugas, E. N., Troped, P. J., Wilson, J. S., Matthews, C. E., Cromley, E. K., & Melly, S. J. (2010). The Built Environment and Location-Based Physical Activity. American Journal of Preventive Medicine, 38(4), 429–438.

https://doi.org/10.1016/j.amepre.2009.12.032

Wellman, R. J., Sylvestre, M., Abi Nader, P., Chiolero, A., Mesidor, M., Dugas, E. N., Tougri, G., & O’Loughlin, J. (2020). Intensity and frequency of physical activity and high blood pressure in adolescents: A longitudinal study. The Journal of Clinical Hypertension, 22(2), 283–290. https://doi.org/10.1111/jch.13806

Whalen, R. T., Carter, D. R., in Steele, C. R. (1988). Influence of physical activity on the regulation of bone

density. Journal of biomechanics, 21(10), 825-837.

Yoganathan, M., Presseau, J., & Welch, V. (2021). Behavioural interventions delivered through interactive social media for health behaviour change, health outcomes, and health equity in the adult population. The Cochrane database of systematic reviews, 5(5), CD012932. https://doi.org/10.1002/14651858.CD012932.pub

Downloads

Published

2024-04-01

How to Cite

Pavlović, R., Sember, V., & Štemberger, V. (2024). Exploring novel approaches for quantifying levels of physical activity. Kinesiologia Slovenica: Scientific Journal on Sport, 30(1), 120-126. https://doi.org/10.52165/kinsi.30.1.120-126

Most read articles by the same author(s)