Effect of training history on the number of squat repetitions at maximal intended velocity under varying loads
DOI:
https://doi.org/10.52165/kinsi.30.3.112-129Keywords:
Velocity-based training, power, explosive repetitions, velocity-loss threshold, strengthAbstract
The aim of this study was to compare the number of maximal intended velocity (MIV) barbell squat repetitions performed at different loads (40%, 60%, and 80% 1RM) to a 10% velocity loss threshold between physical education students (n = 26) with endurance- (E-group) and resistance-training (R-group) backgrounds. Mixed-model ANOVA results indicated an interaction between loads and training groups (p < 0.05, η² = 0.162) in number of repetitions performed. In the E-group, the number of repetitions decreased as load magnitude increased (10, 6 and 5 at 40%, 60% and 80% 1RM, respectfully). Differences between groups were observed only at the 40% 1RM load, where the E-group performed ~50% more repetitions compared to the R-group (10 vs. 5; p < 0.05). Training history influences the number of MIV squat repetitions at lower loads. Thus, monitoring repetition velocity at the individual level is essential for optimizing strength and power training adaptations.
Downloads
References
Bandy, W. D., Lovelace-Chandler, V., & McKitrick-Bandy, B. (1990). Adaptation of skeletal muscle to resistance training. The Journal of Orthopaedic and Sports Physical Therapy, 12(6), 248–255. https://doi.org/10.2519/jospt.1990.12.6.248
Behm, D. G., & Sale, D. G. (1993). Intended rather than actual movement velocity determines velocity-specific training response. Journal of Applied Physiology, 74(1), 359–368. https://doi.org/10.1152/jappl.1993.74.1.359
Duchateau, J., Semmler, J. G., & Enoka, R. M. (2006). Training adaptations in the behavior of human motor units. Journal of Applied Physiology, 101(6), 1766–1775. https://doi.org/10.1152/japplphysiol.00543.2006
Enoka, R. M. (2008). Neuromechanics of Human Movement. Human Kinetics.
Gonyea, W. J., & Sale, D. (1982). Physiology of weight-lifting exercise. Archives of Physical Medicine and Rehabilitation, 63(5), 235–237.
González-Badillo, J. J., Rodríguez-Rosell, D., Sánchez-Medina, L., Gorostiaga, E. M., & Pareja-Blanco, F. (2014). Maximal intended velocity training induces greater gains in bench press performance than deliberately slower half-velocity training. European Journal of Sport Science, 14(8), 772–781. https://doi.org/10.1080/17461391.2014.905987
González-Badilo, J., & Sánchez-Medina, L. (2010). Movement Velocity as a Measure of Loading Intensity in Resistance Training. Int J Sports Med, 31(5), 346–352. https://doi.org/10.1055/s-0030-1248333
Gonzalez-Rothi, E. J., Lee, K.-Z., Dale, E. A., Reier, P. J., Mitchell, G. S., & Fuller, D. D. (2015). Intermittent hypoxia and neurorehabilitation. Journal of Applied Physiology, 119(12), 1455–1465. https://doi.org/10.1152/japplphysiol.00235.2015
Grandys, M., Majerczak, J., Duda, K., Zapart-Bukowska, J., Sztefko, K., & Zoladz, J. A. (2008). The effect of endurance training on muscle strength in young, healthy men in relation to hormonal status. Journal of Physiology and Pharmacology : An Official Journal of the Polish Physiological Society, 59(7), 89–103.
Hamada, T., Sale, D. G., MacDougall, J. D., & Tarnopolsky, M. A. (2000). Postactivation potentiation, fiber type, and twitch contraction time in human knee extensor muscles. Journal of Applied Physiology, 88(6), 2131–2137. https://doi.org/10.1152/jappl.2000.88.6.2131
Ho, J. Q., & Abramowitz, M. K. (2022). Clinical Consequences of Metabolic Acidosis-Muscle. Advances in Chronic Kidney Disease, 29(4), 395–405. https://doi.org/10.1053/j.ackd.2022.04.010
Hoppeler, H. (1987). Morphology of human skeletal muscle and its adaptability to different training conditions. Sportverletzung Sportschaden : Organ der Gesellschaft fur Orthopadisch-Traumatologische Sportmedizin, 1(2), 71–75. https://doi.org/10.1055/s-2007-993695
Hoppeler, H. (2016). Molecular networks in skeletal muscle plasticity. The Journal of Experimental Biology, 219(2), 205–213. https://doi.org/10.1242/jeb.128207
Hughes, D. C., Ellefsen, S., & Baar, K. (2018). Adaptations to endurance and strength training. Cold Spring Harbor Perspectives in Medicine, 8(6), 1–17. https://doi.org/10.1101/cshperspect.a029769
Iglesias-Soler, E., Fernández-Del-Olmo, M., Mayo, X., Fariñas, J., Río-Rodríguez, D., Carballeira, E., Carnero, E. A., Standley, R. A., Giráldez-García, M. A., Dopico-Calvo, X., & Tuimil, J. L. (2017). Changes in the force-velocity mechanical profile after short resistance training programs differing in set configurations. Journal of Applied Biomechanics, 33(2), 144–152. https://doi.org/10.1123/jab.2016-0181
Iguchi, M., Baldwin, K., Boeyink, C., Engle, C., Kehoe, M., Ganju, A., Messaros, A. J., & Shields, R. K. (2010). and Not Task Dependent. 18(2), 308–316. https://doi.org/10.1016/j.jelekin.2006.09.010.Low
Jubrias, S. A., Crowther, G. J., Shankland, E. G., Gronka, R. K., & Conley, K. E. (2003). Acidosis inhibits oxidative phosphorylation in contracting human skeletal muscle in vivo. The Journal of Physiology, 553(2), 589–599. https://doi.org/10.1113/jphysiol.2003.045872
Kaufman, M. P., Hayes, S. G., Adreani, C. M., & Pickar, J. G. (2002). Discharge properties of group III and IV muscle afferents. Advances in Experimental Medicine and Biology, 508, 25–32. https://doi.org/10.1007/978-1-4615-0713-0_4
Kotrlik, J. W., & Williams, H. A. (2003). The Incorporation of Effect Size. Information Technology, Learning, and Performance Journal, 21(1), 1–7.
Kraemer, W. J., Fleck, S. J., & Evans, W. J. (1996). Strength and power training: physiological mechanisms of adaptation. Exercise and Sport Sciences Reviews, 24, 363–397.
Marques, M. C. (2017). Movement velocity vs. strength training. Motricidade, 13(1), 1–2. https://doi.org/10.6063/motricidade.12080
Moss, C. L. (1991). Comparison of the histochemical and contractile properties of human gastrocnemius muscle. The Journal of Orthopaedic and Sports Physical Therapy, 13(6), 322–328. https://doi.org/10.2519/jospt.1991.13.6.322
Munn, J., Herbert, R. D., Hancock, M. J., & Gandevia, S. C. (2005). Resistance training for strength: effect of number of sets and contraction speed. Medicine and Science in Sports and Exercise, 37(9), 1622–1626. https://doi.org/10.1249/01.mss.0000177583.41245.f8
Nuzzo, J. L., Pinto, M. D., Steele, J., Nosaka, K., & Steele, J. (2024). Maximal number of repetitions at percentages of the one repetition maximum: A meta-regression and moderator analysis of sex, age, training status, and exercise. Sports Medicine, 54(2), 303–321. https://doi.org/10.1007/s40279-023-01937-7
Pareja-Blanco, F., Rodríguez-Rosell, D., Sánchez-Medina, L., Gorostiaga, E. M., & González-Badillo, J. J. (2014). Effect of movement velocity during resistance training on neuromuscular performance. International Journal of Sports Medicine, 35(11), 916–924. https://doi.org/10.1055/s-0033-1363985
Pareja-Blanco, F., Villalba-Fernández, A., Cornejo-Daza, P. J., Sánchez-Valdepeñas, J., & González-Badillo, J. J. (2019). Time course of recovery following resistance exercise with different loading magnitudes and velocity loss in the set. Sports, 7(3), 1–10. https://doi.org/10.3390/sports7030059
Pearson, M., García-Ramos, A., Morrison, M., Ramirez-Lopez, C., Dalton-Barron, N., & Weakley, J. (2020). Velocity loss thresholds reliably control kinetic and kinematic outputs during free weight resistance training. International Journal of Environmental Research and Public Health, 17(18), 1–11. https://doi.org/10.3390/ijerph17186509
Pérez-Castilla, A., Jukic, I., & García-Ramos, A. (2021). Validation of a novel method to assess maximal neuromuscular capacities through the load-velocity relationship. Journal of Biomechanics, 127, 110684. https://doi.org/10.1016/j.jbiomech.2021.110684
Pérez-Castilla, A., Piepoli, A., Garrido-Blanca, G., Delgado-García, G., Balsalobre-Fernández, C., & García-Ramos, A. (2019). Precision of 7 Commercially Available Devices for Predicting the Bench Press 1-Repetition Maximum From the Individual Load-Velocity Relationship. International Journal of Sports Physiology and Performance, 14(10), 1442–1446. https://doi.org/10.1123/ijspp.2018-0801
Plotkin, D. L., Roberts, M. D., Haun, C. T., & Schoenfeld, B. J. (2021). Muscle fiber type transitions with exercise training: Shifting perspectives. Sports, 9(9), 1–11. https://doi.org/10.3390/SPORTS9090127
Radak, Z. (2019). Skeletal muscle, function, and muscle fiber types. In The Physiology of Physical Training (pp. 15–30). Elsevier. https://doi.org/10.1016/C2017-0-01911-0
Richens, B., & Cleather, D. J. (2014). The relationship between the number of repetitions performed at given intensities is different in endurance and strength trained athletes. Biology of Sport, 31(2), 157–161. https://doi.org/10.5604/20831862.1099047
Rojas, F. J., Cepero, A. M., Oña, L., & Gutierrez, M. (2000). Kinematic adjusments in the basketabll jump shot against an opponent. Ergonomics, 43(10), 1651–1660. https://doi.org/10.1080/001401300750004069
Sale, D. G. (1988). Neural adaptation to resistance training. Medicine and Science in Sports and Exercise, 20(5), 135–145. https://doi.org/10.1249/00005768-198810001-00009
Šarabon, N., Rosker, J., Fruhmann, H., Burggraf, S., Loefler, S., & Kern, H. (2013). Reliability of maximal voluntary contraction related parameters measured by a novel portable isometric knee dynamometer. Physikalische Medizin Rehabilitationsmedizin Kurortmedizin, 23(1), 22–27. https://doi.org/10.1055/s-0032-1331190
Taylor, A. W., & Bachman, L. (1999). The effects of endurance training on muscle fibre types and enzyme activities. Canadian Journal of Applied Physiology, 24(1), 41–53. https://doi.org/10.1139/h99-005
Tøien, T., Unhjem, R., Berg, O. K., Aagaard, P., & Wang, E. (2023). Strength versus endurance trained master athletes: Contrasting neurophysiological adaptations. Experimental Gerontology, 171, 112038. https://doi.org/10.1016/j.exger.2022.112038
Van Cutsem, M. M., Duchateau, J. J. J., Hainaut, K., Cutsem, M. Van, Duchateau, J. J. J., Hainaut, K., Van Cutsem, M. M., Duchateau, J. J. J., & Hainaut, K. (1998). Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. J Physiol, 513(1), 295–305. https://doi.org/10.1111/j.1469-7793.1998.295by .x
Weakley, J., Mann, B., Banyard, H. G., & Mclaren, S. (2021). Velocity-Based Training: From Theory to Application. Strength & Conditioning Journal, 43(2), 31–49. https://doi.org/10.1519/SSC.0000000000000560
Weakley, J., Mclaren, S., Ramirez-lopez, C., García-, A., Dalton-barron, N., Banyard, H., Mann, B., Weaving, D., & Jones, B. (2020). Application of velocity loss thresholds during free-weight resistance training: Responses and reproducibility of perceptual, metabolic, and neuromuscular outcomes. Journal of Sports Sciences, 38(5), 477–485. https://doi.org/10.1080/02640414.2019.1706831
Weakley, J., Ramirez-Lopez, C., McLaren, S., Dalton-Barron, N., Weaving, D., Jones, B., Till, K., & Banyard, H. (2020). The effects of 10%, 20%, and 30% velocity loss thresholds on kinetic, kinematic, and repetition characteristics during the barbell back squat. International Journal of Sports Physiology and Performance, 14(2), 180–188. https://doi.org/10.1123/ijspp.2018-1008
Xenofondos, A., Patikas, D., Koceja, D. M., Behdad, T., Bassa, E., Kellis, E., & Kotzamanidis, C. (2015). Post-activation potentiation: The neural effects of post-activation depression. Muscle and Nerve, 52(2), 252–259. https://doi.org/10.1002/mus.24533
Yáñez-García, J. M., Rodríguez-Rosell, D., Mora-Custodio, R., & González-Badillo, J. J. (2022). Changes in Muscle Strength, Jump, and Sprint Performance in Young Elite Basketball Players: The Impact of Combined High-Speed Resistance Training and Plyometrics. Journal of Strength and Conditioning Research, 36(2), 478–485. https://doi.org/10.1519/JSC.0000000000003472
Zierath, J. R., & Hawley, J. A. (2004). Skeletal muscle fiber type: Influence on contractile and metabolic properties. PLoS Biology, 2(10). https://doi.org/10.1371/journal.pbio.0020348
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Darjan Spudić, Igor Štirn

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.