Effect of training history on the number of squat repetitions at maximal intended velocity under varying loads

Authors

  • Darjan Spudić University of Ljubljana, Faculty of Sport, Ljubljana, Slovenia
  • Igor Štirn University of Ljubljana, Faculty of Sport, Ljubljana, Slovenia

DOI:

https://doi.org/10.52165/kinsi.30.3.112-129

Keywords:

Velocity-based training, power, explosive repetitions, velocity-loss threshold, strength

Abstract

The aim of this study was to compare the number of maximal intended velocity (MIV) barbell squat repetitions performed at different loads (40%, 60%, and 80% 1RM) to a 10% velocity loss threshold between physical education students (n = 26) with endurance- (E-group) and resistance-training (R-group) backgrounds. Mixed-model ANOVA results indicated an interaction between loads and training groups (p < 0.05, η² = 0.162) in number of repetitions performed. In the E-group, the number of repetitions decreased as load magnitude increased (10, 6 and 5 at 40%, 60% and 80% 1RM, respectfully). Differences between groups were observed only at the 40% 1RM load, where the E-group performed ~50% more repetitions compared to the R-group (10 vs. 5; p < 0.05). Training history influences the number of MIV squat repetitions at lower loads. Thus, monitoring repetition velocity at the individual level is essential for optimizing strength and power training adaptations.

Downloads

Download data is not yet available.

References

Bandy, W. D., Lovelace-Chandler, V., & McKitrick-Bandy, B. (1990). Adaptation of skeletal muscle to resistance training. The Journal of Orthopaedic and Sports Physical Therapy, 12(6), 248–255. https://doi.org/10.2519/jospt.1990.12.6.248

Behm, D. G., & Sale, D. G. (1993). Intended rather than actual movement velocity determines velocity-specific training response. Journal of Applied Physiology, 74(1), 359–368. https://doi.org/10.1152/jappl.1993.74.1.359

Duchateau, J., Semmler, J. G., & Enoka, R. M. (2006). Training adaptations in the behavior of human motor units. Journal of Applied Physiology, 101(6), 1766–1775. https://doi.org/10.1152/japplphysiol.00543.2006

Enoka, R. M. (2008). Neuromechanics of Human Movement. Human Kinetics.

Gonyea, W. J., & Sale, D. (1982). Physiology of weight-lifting exercise. Archives of Physical Medicine and Rehabilitation, 63(5), 235–237.

González-Badillo, J. J., Rodríguez-Rosell, D., Sánchez-Medina, L., Gorostiaga, E. M., & Pareja-Blanco, F. (2014). Maximal intended velocity training induces greater gains in bench press performance than deliberately slower half-velocity training. European Journal of Sport Science, 14(8), 772–781. https://doi.org/10.1080/17461391.2014.905987

González-Badilo, J., & Sánchez-Medina, L. (2010). Movement Velocity as a Measure of Loading Intensity in Resistance Training. Int J Sports Med, 31(5), 346–352. https://doi.org/10.1055/s-0030-1248333

Gonzalez-Rothi, E. J., Lee, K.-Z., Dale, E. A., Reier, P. J., Mitchell, G. S., & Fuller, D. D. (2015). Intermittent hypoxia and neurorehabilitation. Journal of Applied Physiology, 119(12), 1455–1465. https://doi.org/10.1152/japplphysiol.00235.2015

Grandys, M., Majerczak, J., Duda, K., Zapart-Bukowska, J., Sztefko, K., & Zoladz, J. A. (2008). The effect of endurance training on muscle strength in young, healthy men in relation to hormonal status. Journal of Physiology and Pharmacology : An Official Journal of the Polish Physiological Society, 59(7), 89–103.

Hamada, T., Sale, D. G., MacDougall, J. D., & Tarnopolsky, M. A. (2000). Postactivation potentiation, fiber type, and twitch contraction time in human knee extensor muscles. Journal of Applied Physiology, 88(6), 2131–2137. https://doi.org/10.1152/jappl.2000.88.6.2131

Ho, J. Q., & Abramowitz, M. K. (2022). Clinical Consequences of Metabolic Acidosis-Muscle. Advances in Chronic Kidney Disease, 29(4), 395–405. https://doi.org/10.1053/j.ackd.2022.04.010

Hoppeler, H. (1987). Morphology of human skeletal muscle and its adaptability to different training conditions. Sportverletzung Sportschaden : Organ der Gesellschaft fur Orthopadisch-Traumatologische Sportmedizin, 1(2), 71–75. https://doi.org/10.1055/s-2007-993695

Hoppeler, H. (2016). Molecular networks in skeletal muscle plasticity. The Journal of Experimental Biology, 219(2), 205–213. https://doi.org/10.1242/jeb.128207

Hughes, D. C., Ellefsen, S., & Baar, K. (2018). Adaptations to endurance and strength training. Cold Spring Harbor Perspectives in Medicine, 8(6), 1–17. https://doi.org/10.1101/cshperspect.a029769

Iglesias-Soler, E., Fernández-Del-Olmo, M., Mayo, X., Fariñas, J., Río-Rodríguez, D., Carballeira, E., Carnero, E. A., Standley, R. A., Giráldez-García, M. A., Dopico-Calvo, X., & Tuimil, J. L. (2017). Changes in the force-velocity mechanical profile after short resistance training programs differing in set configurations. Journal of Applied Biomechanics, 33(2), 144–152. https://doi.org/10.1123/jab.2016-0181

Iguchi, M., Baldwin, K., Boeyink, C., Engle, C., Kehoe, M., Ganju, A., Messaros, A. J., & Shields, R. K. (2010). and Not Task Dependent. 18(2), 308–316. https://doi.org/10.1016/j.jelekin.2006.09.010.Low

Jubrias, S. A., Crowther, G. J., Shankland, E. G., Gronka, R. K., & Conley, K. E. (2003). Acidosis inhibits oxidative phosphorylation in contracting human skeletal muscle in vivo. The Journal of Physiology, 553(2), 589–599. https://doi.org/10.1113/jphysiol.2003.045872

Kaufman, M. P., Hayes, S. G., Adreani, C. M., & Pickar, J. G. (2002). Discharge properties of group III and IV muscle afferents. Advances in Experimental Medicine and Biology, 508, 25–32. https://doi.org/10.1007/978-1-4615-0713-0_4

Kotrlik, J. W., & Williams, H. A. (2003). The Incorporation of Effect Size. Information Technology, Learning, and Performance Journal, 21(1), 1–7.

Kraemer, W. J., Fleck, S. J., & Evans, W. J. (1996). Strength and power training: physiological mechanisms of adaptation. Exercise and Sport Sciences Reviews, 24, 363–397.

Marques, M. C. (2017). Movement velocity vs. strength training. Motricidade, 13(1), 1–2. https://doi.org/10.6063/motricidade.12080

Moss, C. L. (1991). Comparison of the histochemical and contractile properties of human gastrocnemius muscle. The Journal of Orthopaedic and Sports Physical Therapy, 13(6), 322–328. https://doi.org/10.2519/jospt.1991.13.6.322

Munn, J., Herbert, R. D., Hancock, M. J., & Gandevia, S. C. (2005). Resistance training for strength: effect of number of sets and contraction speed. Medicine and Science in Sports and Exercise, 37(9), 1622–1626. https://doi.org/10.1249/01.mss.0000177583.41245.f8

Nuzzo, J. L., Pinto, M. D., Steele, J., Nosaka, K., & Steele, J. (2024). Maximal number of repetitions at percentages of the one repetition maximum: A meta-regression and moderator analysis of sex, age, training status, and exercise. Sports Medicine, 54(2), 303–321. https://doi.org/10.1007/s40279-023-01937-7

Pareja-Blanco, F., Rodríguez-Rosell, D., Sánchez-Medina, L., Gorostiaga, E. M., & González-Badillo, J. J. (2014). Effect of movement velocity during resistance training on neuromuscular performance. International Journal of Sports Medicine, 35(11), 916–924. https://doi.org/10.1055/s-0033-1363985

Pareja-Blanco, F., Villalba-Fernández, A., Cornejo-Daza, P. J., Sánchez-Valdepeñas, J., & González-Badillo, J. J. (2019). Time course of recovery following resistance exercise with different loading magnitudes and velocity loss in the set. Sports, 7(3), 1–10. https://doi.org/10.3390/sports7030059

Pearson, M., García-Ramos, A., Morrison, M., Ramirez-Lopez, C., Dalton-Barron, N., & Weakley, J. (2020). Velocity loss thresholds reliably control kinetic and kinematic outputs during free weight resistance training. International Journal of Environmental Research and Public Health, 17(18), 1–11. https://doi.org/10.3390/ijerph17186509

Pérez-Castilla, A., Jukic, I., & García-Ramos, A. (2021). Validation of a novel method to assess maximal neuromuscular capacities through the load-velocity relationship. Journal of Biomechanics, 127, 110684. https://doi.org/10.1016/j.jbiomech.2021.110684

Pérez-Castilla, A., Piepoli, A., Garrido-Blanca, G., Delgado-García, G., Balsalobre-Fernández, C., & García-Ramos, A. (2019). Precision of 7 Commercially Available Devices for Predicting the Bench Press 1-Repetition Maximum From the Individual Load-Velocity Relationship. International Journal of Sports Physiology and Performance, 14(10), 1442–1446. https://doi.org/10.1123/ijspp.2018-0801

Plotkin, D. L., Roberts, M. D., Haun, C. T., & Schoenfeld, B. J. (2021). Muscle fiber type transitions with exercise training: Shifting perspectives. Sports, 9(9), 1–11. https://doi.org/10.3390/SPORTS9090127

Radak, Z. (2019). Skeletal muscle, function, and muscle fiber types. In The Physiology of Physical Training (pp. 15–30). Elsevier. https://doi.org/10.1016/C2017-0-01911-0

Richens, B., & Cleather, D. J. (2014). The relationship between the number of repetitions performed at given intensities is different in endurance and strength trained athletes. Biology of Sport, 31(2), 157–161. https://doi.org/10.5604/20831862.1099047

Rojas, F. J., Cepero, A. M., Oña, L., & Gutierrez, M. (2000). Kinematic adjusments in the basketabll jump shot against an opponent. Ergonomics, 43(10), 1651–1660. https://doi.org/10.1080/001401300750004069

Sale, D. G. (1988). Neural adaptation to resistance training. Medicine and Science in Sports and Exercise, 20(5), 135–145. https://doi.org/10.1249/00005768-198810001-00009

Šarabon, N., Rosker, J., Fruhmann, H., Burggraf, S., Loefler, S., & Kern, H. (2013). Reliability of maximal voluntary contraction related parameters measured by a novel portable isometric knee dynamometer. Physikalische Medizin Rehabilitationsmedizin Kurortmedizin, 23(1), 22–27. https://doi.org/10.1055/s-0032-1331190

Taylor, A. W., & Bachman, L. (1999). The effects of endurance training on muscle fibre types and enzyme activities. Canadian Journal of Applied Physiology, 24(1), 41–53. https://doi.org/10.1139/h99-005

Tøien, T., Unhjem, R., Berg, O. K., Aagaard, P., & Wang, E. (2023). Strength versus endurance trained master athletes: Contrasting neurophysiological adaptations. Experimental Gerontology, 171, 112038. https://doi.org/10.1016/j.exger.2022.112038

Van Cutsem, M. M., Duchateau, J. J. J., Hainaut, K., Cutsem, M. Van, Duchateau, J. J. J., Hainaut, K., Van Cutsem, M. M., Duchateau, J. J. J., & Hainaut, K. (1998). Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. J Physiol, 513(1), 295–305. https://doi.org/10.1111/j.1469-7793.1998.295by .x

Weakley, J., Mann, B., Banyard, H. G., & Mclaren, S. (2021). Velocity-Based Training: From Theory to Application. Strength & Conditioning Journal, 43(2), 31–49. https://doi.org/10.1519/SSC.0000000000000560

Weakley, J., Mclaren, S., Ramirez-lopez, C., García-, A., Dalton-barron, N., Banyard, H., Mann, B., Weaving, D., & Jones, B. (2020). Application of velocity loss thresholds during free-weight resistance training: Responses and reproducibility of perceptual, metabolic, and neuromuscular outcomes. Journal of Sports Sciences, 38(5), 477–485. https://doi.org/10.1080/02640414.2019.1706831

Weakley, J., Ramirez-Lopez, C., McLaren, S., Dalton-Barron, N., Weaving, D., Jones, B., Till, K., & Banyard, H. (2020). The effects of 10%, 20%, and 30% velocity loss thresholds on kinetic, kinematic, and repetition characteristics during the barbell back squat. International Journal of Sports Physiology and Performance, 14(2), 180–188. https://doi.org/10.1123/ijspp.2018-1008

Xenofondos, A., Patikas, D., Koceja, D. M., Behdad, T., Bassa, E., Kellis, E., & Kotzamanidis, C. (2015). Post-activation potentiation: The neural effects of post-activation depression. Muscle and Nerve, 52(2), 252–259. https://doi.org/10.1002/mus.24533

Yáñez-García, J. M., Rodríguez-Rosell, D., Mora-Custodio, R., & González-Badillo, J. J. (2022). Changes in Muscle Strength, Jump, and Sprint Performance in Young Elite Basketball Players: The Impact of Combined High-Speed Resistance Training and Plyometrics. Journal of Strength and Conditioning Research, 36(2), 478–485. https://doi.org/10.1519/JSC.0000000000003472

Zierath, J. R., & Hawley, J. A. (2004). Skeletal muscle fiber type: Influence on contractile and metabolic properties. PLoS Biology, 2(10). https://doi.org/10.1371/journal.pbio.0020348

Downloads

Published

2024-12-14

Issue

Section

Articles

How to Cite

Spudić, D., & Štirn, I. (2024). Effect of training history on the number of squat repetitions at maximal intended velocity under varying loads. Kinesiologia Slovenica: Scientific Journal on Sport, 30(3), 112-129. https://doi.org/10.52165/kinsi.30.3.112-129