ODKRIVANJE NOVIH INFORMACIJ V BIBLIOGRAFSKIH ZBIRKAH PODATKOV

Avtorji

  • Emil Hudomalj Dr. Emil Hudomalj je zaposlen na Inštitutu za biomedicinsko informatiko, Medicinska fakulteta, Univerza v Ljubljani. Naslov: Vrazov trg 2, 1104 Ljubljana Naslov elektronske pošte: emil.hudomalj@mf.uni-lj.si

DOI:

https://doi.org/10.55741/knj.49.4.14119

Ključne besede:

bibliografske zbirke podatkov, analitske zbirke podatkov, podatkovna skladišča, podatkovno rudarjenje

Povzetek

IZVLEČEK

Zbirke podatkov vsebujejo tudi informacije, ki jih z današnjimi sistemi za poizvedovanje običajno ne moremo odkriti. V te namene lahko uporabimo metode za odkrivanje zakonitosti iz zbirk podatkov, ki omogočajo pregledovanje zbirnih podatkov, ugotavljanje trendov, izdelavo sprotnih analiz, iskanje neznanih povezav med podatki ipd. Z njimi uspešno odkrivajo nove informacije na mnogih področij, kot so bančništvo, zavarovalništvo in telekomunikacije, manj pogosto pa se te metode uporabljajo na področju knjižničarstva. V članku je povzet razvoj sistemov za poizvedovanje po bibliografskih zbirkah podatkov z nekaterimi zgodnjimi poskusi uporabe novejših pristopov za odkrivanje zakonitosti iz zbirk podatkov. Sledi opis analitskih zbirk podatkov, ki najpogosteje služijo kot osnova za odkrivanje novih zakonitosti, in opis podatkovnega rudarjenja, ki predstavlja pomemben korak v tem procesu. Poudarjena je vloga knjižničarjev, ki lahko prevzamejo ključno vlogo v procesih izgradnje sistemov za odkrivanje novih informacij v bibliografskih zbirkah podatkov.

Prenosi

Podatki o prenosih še niso na voljo.

Literatura

Adamič, Š., Rožić-Hristovski, A., Hristovski, D., & Dimec, J. (1996). Sistem za podporo pri ocenjevanju uspešnosti raziskovalnega in razvojnega dela v slovenski medicini. Zdravstveni Vestnik, 65(7), 385-387.

Agrawal, R., Gupta, A., & Sarawagi, S. (1997). Modeling multidimensional databases. IEEE, 232-243. DOI: https://doi.org/10.1109/ICDE.1997.581777

Agrawal, R., Gupta, A., & Sarawagi, S. (1996). Modeling multidimensional databases: research report. Yorktown Heights, New York: IBM Research Division.

Bonifati, A., Cattaneo, F., Ceri, S., Fuggetta, A., & Paraboschi, S. (2001). Designing data marts for data warehouses. ACM Transaction on Software Engineering and Methodology, 10(4), 452-483. DOI: https://doi.org/10.1145/384189.384190

Bradley, P. S., Fayyad, U., & Mangasarian, O. L. (1999). Mathematical programming for data mining: formulations and challenges. INFORMS Journal on Computing, 11(3), 217-238. DOI: https://doi.org/10.1287/ijoc.11.3.217

Braun, T., Glaenzel, W., & Schubert, A. (1985). Scientometric indicators: evaluation. Singapore: World Scientific Publishing. DOI: https://doi.org/10.1142/0106

Buckland, M. (1999). Library services in theory and context (2nd ed. ed.)Berkeley Digital Library SunSITE.

Buyzdlowski, J. W., Song, I.-Y., & Hassell, L. (1999). A framework for objectoriented on-line analytic processing. DOLAP’98 (pp. 10-15). New York: ACM Press.

Codd, E. F., Codd, S. B., & Salley, C. T. (1993) Providing OLAP to user analysts: An IT mandate (Web Page). URL http://www.hyperion.com/products/whitepapers (2003, January 22).

Egghe, L. (2000). Lectures on Informetrics and Scientometrics. Bangalore, India: Sarada Rangathan Endowement for Library Science.

Fayyad, U., Haussler, D., & Stolorz, P. (1996). Mining scientific data. Communications of the ACM, 39(11), 51-57. DOI: https://doi.org/10.1145/240455.240471

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI Magazine, 17(3), 37-54.

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM, 39(11), 27-34. DOI: https://doi.org/10.1145/240455.240464

Fayyad, U., & Stolorz, P. (1997). Data mining and KDD: Promise and challenges. Future Generation Computer System, 13, 99-115. DOI: https://doi.org/10.1016/S0167-739X(97)00015-0

Finn, R. (1998). Program uncovers hidden connections in the literature. The Scientist, 12(10), 12.

Glaenzel, W. , Schubert, A., & Czerwon, H. J. (1999). A bibliometric analysis of international scientific cooperation of the European Union (1985-1995). Scientometrics, 45(2 ), 185-202. DOI: https://doi.org/10.1007/BF02458432

Glymour, C., Madigan, D., Pregibon, D., & Smyth, P. (1996). Statistical inference and data mining. Communications of the ACM, 39(11), 35-41. DOI: https://doi.org/10.1145/240455.240466

Godin, B. (2003). The emergence of science and technology indicators: why did governments supplement statistic with indicators? Montreal: Project on the history and sociology of S&T statistic: paper no.8. DOI: https://doi.org/10.1016/S0048-7333(02)00032-X

Han, J., & Kamber, M. (2001). Data mining: concepts and techniques. San Francisco: Morgan Kaufmann Publishers.

Hand, D., Mannila, H., & Smyth, P. (2001). Principles of Data Mining. London: The MIT Press.

Hearts, M. A. (1999). Untangling text data mining (Web Page). URL http://www.sims.berkeley.edu/~hearst/papers/acl99/acl99-tdm.html DOI: https://doi.org/10.3115/1034678.1034679

Hood, W.W. and Wilson, C.S. (2001). “The literature of bibliometrics, scientometrics, and informetrics”, Scientometrics, vol. 52 no. 2, pp. 291-314. DOI: https://doi.org/10.1023/A:1017919924342

Hormozi, A. M., & Giles, S. (2004). Data mining: A competitive weapon for banking and retail industries. Information Systems Management. DOI: https://doi.org/10.1201/1078/44118.21.2.20040301/80423.9

Hristovski, D., Džeroski, S., & Rožić-Hristovski, A. 2000. Supporting discovery in medicine by association rule mining of bibliographic database. Principles of data mining and knowledge discovery: proceedings of the 4th European conference, PKDD 2000, Lyon, September 13-16, 2000 (pp. 446-451). Springer.

Hristovski, D., Peterlin, B., Mitchell, J., & Humphrey SM. (2003). Improving literature based discovery support by genetic knowledge integration. Stud Health Technol Inform, 95, 68-73.

Hristovski, D., Rožić-Hristovski, A., & Adamič, Š. (1996). A decision support system for biomedical research evaluation. Medical informatics Europe ’96. (Part A,B): human factes in information technologies. Tokyo: IOS Press.

Hristovski, D., Stare, J., Peterlin, B., & Džeroski, S. (2001). Supporting discovery in medicine by association rule mining in Medline and UMLS. MEDINFO 2001 Amsterdam: IOS Press. DOI: https://doi.org/10.1007/3-540-45372-5_49

Hudomalj, E. (2003). Analiza bibliografskih zbirk podatkov z orodji za sprotno analitsko obdelavo: primer zbirke Biomedicina Slovenica. Ljubljana: Medicinska fakulteta.

Hudomalj, E. , & Vidmar, G. (2003). OLAP and bibliographic databases. Scientometrics, 58 (3), 609-22. DOI: https://doi.org/10.1023/B:SCIE.0000006883.28709.d2

Imielinski, T., & Mannila, H. (1996). A database perspective on knowledge discovery. Communications of the ACM, 39(11), 58-64. DOI: https://doi.org/10.1145/240455.240472

Inmon, W. H. (1996). Building the Data Warehouse. New York: John Wiley & Sons, Inc.

Katz, J. S., & Hicks, D. (1997). Deskop scientometrics. Scientometrics, 38(1), 141-153. DOI: https://doi.org/10.1007/BF02461128

Losiewicz, P., Oard, D. W., & Kostoff, R. N. (2000). Textual data mining to support science and technology management. Journal of Intelligent Information Systems, 15, 99-119. DOI: https://doi.org/10.1023/A:1008777222412

Ma, C., Chou, D. C., & Yen, D. C. (2000). Data warehousing, technology assessment and management. Industrial Management and Data System, 100(3), 125-134. DOI: https://doi.org/10.1108/02635570010323193

Marcum, J. W. (2001). From information center to discovery system: next step for libraries? The Journal of Academic Librarianship, 27(2), 97-106. DOI: https://doi.org/10.1016/S0099-1333(00)00181-6

Margo, H. (2004). Data-mining algorithms in Oracle9i and Micrisoft SQL Server. Campu Wide Information Systems, 21(3), 132-8. DOI: https://doi.org/10.1108/10650740410544036

Mohorič, T. (1995). Uvod v podatkovne baze (1.izd. ed.). Ljubljana: BI-TIM.

Moxon, B. (1996). Defining data mining. DBMS online, (Suppl). URL http://www.dbmsmag.com

Nicholas, D. , & Ritchie, M. (1978). Literature and bibliometrics. London: Clive Bingley.

Nicholson, S. Bibliomining: Data Mining for Libraries (Web Page). Pridobljeno 22.1.2003 s spletne strani: http://www.bibliomining.com/index.html (cit. Nicholson, 2003a).

Nicholson, S. (2003). The Bibliomining Process: Data Warehousing and Data Mining for Library Decision Making. Information Technology and Libraries, 33(4), 146-51. (cit. Nicholson, 2003b).

Nicholson, S. (2003). Introduction to This Special Issue on the Bibliomining Process. Information Technology and Libraries, 33(4), 144. (cit. Nicholson, 2003c).

Nicholson, S., & Stanton, J. (2004) Gaining strategic advantage through bibliomining: data mining for management decisions in corporate, special, digital and traditional libraries (Web Page). Pridobljeno 14.7.2003 s spletne strani: http://biblio.syr.edu/bibliomining/articles/nicholson1.pdf

Nicholson, Scott (2005), “The Basis for Bibliomining: Frameworks for Bringing Together Usage-Based Data Mining and Bibliometrics through Data Warehousing in Digital Library Services”. Pridobljeno 31.5.2005 s spletne strani: http://bibliomining.com/nicholson/nicholsonbibliointro.html

Norton, J. M. (1999). Knowledge discovery in databases. Library Trends, 48(1), 9-21.

Piatetsky-Shapiro, G. (2000). Knowledge discovery in databases: 10 years after. SIGKDD Explorations, 1(2). DOI: https://doi.org/10.1145/846183.846197

Poe, V. (1996). Building a data warehouse for decision support. Upper Saddle River: Prentice Hall PTR.

Qin, J., & Norton, J. M. (1999). Introduction. Library Trends, 48( 1), 1-8.

Sotolongo-Aguilar, G. R., Suarez-Balseiro, C. A., & Guzman-Sanchez, M. V. (2000). Modular bibliometric information system with proprietary software (MOBIS-ProSoft): a versatile approach to bibiliometric research tools. Library and Information Science Electronic Journal, 10(2). DOI: https://doi.org/10.32655/LIBRES.2000.2.1

S.-P. T. , & Needamangala, A. (2000). Harvesting information from a library data warehouse. Information Technology and Libraries, 17-28.

Swanson, D. R., & Smalheiser, N. R. (1997). An interactive system for finding complementary literatures: a stimulus to scientific discovery. Artifical Intelligence, 91, 183-203. DOI: https://doi.org/10.1016/S0004-3702(97)00008-8

Swanson, D. R., & Smalheiser, N. R. (1999). Implicit text linkages between Medline records; using Arrowsmith as an aid to scientific discovery. Library Trends, 48(1), 48-59.

Swanson, D. R. (1986). Fish oil, Raynaud’s syndrome, and undiscovered public knowledge. Perspectives in Biology and Medicine, 30(1), 7-18. DOI: https://doi.org/10.1353/pbm.1986.0087

Thomsen, E. (2002). OLAP solutions: building multidimensional information systems (Second ed.). New York: Wiley Computer Publishing.

Wormell, I. (2000). Informetrics: a new area of quantitative studies. Education for Information, 18(2/3), 131-138. DOI: https://doi.org/10.3233/EFI-2000-182-304

Wormell, I. (1998). Informetrics: an emerging subdiscipline in information science. Asian Libraries, 7(10), 257-67. DOI: https://doi.org/10.1108/10176749810241838

Prenosi

Objavljeno

10.02.2014

Številka

Rubrika

ČLANKI

Kako citirati

Hudomalj, E. (2014). ODKRIVANJE NOVIH INFORMACIJ V BIBLIOGRAFSKIH ZBIRKAH PODATKOV. Knjižnica: Revija Za področje Bibliotekarstva in Informacijske Znanosti, 49(4). https://doi.org/10.55741/knj.49.4.14119