Anatomical and chemical characterization of Alstonia boonei for pulp and paper production

Anatomske in kemijske lastnosti lesa vrste Alstonia boonei za proizvodnjo celuloze in papirja

Authors

  • Kojo Agyapong Afrifah
  • Enoch Adjei-Mensah

DOI:

https://doi.org/10.26614/les-wood.2021.v70n02a02

Keywords:

Alstonia boonei, fibre characteristics, lesser utilized species, pulp, paper

Abstract

Alstonia boonei, an abundant lesser utilized species within the West African Subregion, was evaluated as an alternative raw material for pulp and paper production. The basic density (BD), fibre characteristics [fibre length (FL), fibre diameter (FD), lumen diameter (LD) and wall thickness (WT)], derived anatomical indices [Flexibility Ratio (FR), Slenderness Ratio (SR), Rigidity Coefficient (RC), Luce’s Shape Factor (LSF), Solids Factor (SF) and Runkel Ratio (RR)] and chemical composition (lignin, holocellulose, 1% NaOH solubility and ash contents) of A. boonei were studied to evaluate variation along the trunk (base, middle and top portions) and ascertain its suitability for pulp and paper production. Significant variations were observed in the density and fibre characteristics along the trunk of the tree. Although the FD was large, the observed adequate FL, thin-wall and large LD implied easy beating of fibres and manufacture of dense, smooth and strong papers. The favourable SF, RR, FR, RC, and LSF values obtained for the fibres would produce papers with suitable burst and tearing strengths and folding endurance. Chemically the lower lignin (< 30%), ash and 1% NaOH solubility and the high holocellulose contents of A. boonei, will generate a higher pulp yield. A. boonei although a low-density species, will be desirable for pulp and paper production.

Downloads

Download data is not yet available.

References

Adi, D. S., Risanto, L., Damayanti, R., Rullyati, S., Dewi, L. M., Susanti, R., Dwianto, W., Hermiati, E., & Watanabe, T. (2014). Exploration of unutilized fast growing wood species from secondary forest in Central Kalimantan: Study on the fiber characteristic and wood density. Procedia Environmental Sciences, 20, 321-327.

Afrifah, K. A., Osei, L., & Ofosu, S. (2020). Suitability of Four Varieties of Cocos Nucifera Husk in Ghana for Pulp and Paper Production. Journal of Natural Fibers. DOI: https://doi.org/10.1080/15440478.2020.1870615

Ajuziogu, G. C., & Ojua, E. O. (2020). Comparative Anatomical Studies on the Wood and Bast Fibres of Gmelina arborea. Journal of Materials Science Research and Reviews, 40-46.

Ajuziogu, G. C., Ojua, E. O., & Aina, D. O. (2019). Comparative paper-making potentials of three species from the Verbenaceae and Lamiaceae family. Asian Journal of Research in Botany, 1-5.

American Society for Testing and Materials (ASTM) D 1102 – 84. (2007). Standard Test Method for Ash in Wood. Philadelphia, PA.

American Society for Testing and Materials (ASTM) D 1104 – 56, (1978). Standard Test Method for Holocellulose in Wood. Philadelphia, PA.

American Society for Testing and Materials (ASTM) D 1105 – 96. (2013). Standard Test Method for Preparation of Extractive-free Wood. West Conshohocken, PA, United States.

American Society for Testing and Materials (ASTM) D 1106 – 96. (2007). Standard Test Method for Acid-Insoluble Lignin in Wood. Philadelphia, PA.

American Society for Testing and Materials (ASTM) D 1107 – 96. (2007). Standard Test Method for Ethanol-Toluene Solubility of Wood. Philadelphia, PA.

American Society for Testing and Materials (ASTM) D 1109 – 84. (2007). Standard Test Method for 1% Sodium Hydroxide Solubility of Wood. Philadelphia, PA.

Amidon, T. S. (1981). Effect of the wood properties of hardwood on kraft paper properties. Tappi, 64(3), 123-126.

Anthonio, F., & Antwi-Boasiako, C. (2017). The Characteristics of Fibres Within Coppiced and Non-Coppiced Rosewood (Pterocarpus erinaceus Poir.) and their Aptness for Wood - and Paper - Based Products. Pro Ligno, 13(2), 27–39.

Ashraf, A., Ragab, M., Osama, G., & Ahmed, M. (2016). New raw material for paper pulp. Bsc Thesis, Minia University. Available at https://www.academia.edu/30668511/New_raw_material_for_paper_pulp

Biermann, C. J. (1996). Handbook of pulping and papermaking. Elsevier.

Bowyer, J. L., Haygreen, J. G., & Schmulsky, R. (2003). Forest Products and Wood Science: An Introduction. Fourth edition. Iowa State Press.

Darkwa, N. A. (1996). Paper imports and consumption patterns in Ghana. Ghana Journal of Forestry, 3, 55-60.

Dehkhoda, A. (2008). Concentrating lignocellulosic hydrolysate by evaporation and its fermentation by repeated fed batch using flocculating Saccharomyces cerevisiae. Master’s thesis, University of Borås/School of Engineering. Available at http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-19095

Dutt, D., & Tyagi, C. H. (2011). Comparison of various eucalyptus species for their morphological, chemical, pulp and paper making characteristics. Indian Journal of Chemical Technology, 18, 145-151.

Ekhuemelo, D. O., & Tor, K. (2013). Assessment of fibre characteristics and suitability of maize husk and stalk for pulp and paper production. Journal of Research in Forestry, Wildlife and Environment, 5(1), 41-49.

Enayati, A. A., Hamzeh, Y., Mirshokraiei, S. A., & Molaii, M. (2009). Papermaking potential of canola stalks. BioResources, 4(1), 245-256.

Hawthorne, W. (2006). Photoguide for the forest trees of Ghana: a tree-spotter's field guide for identifying the largest trees. Oxford Forestry Institute, Department of Plant Sciences.

Hegde, R. K., & Varghese, M. (2008). Genetic analysis of wood traits in Eucalyptus camaldulensis. Journal of Tree Science, 27,1-13.

Iawa Committee (1989). IAWA list of microscopic features for hardwood identification. IAWA Bull. ns, 10(3), 219-332.

Istas, J. R., Heremans, R., & Roekelboom, E. L. (1954). General Characteristics of Wood, Hardwood of Congo Belge in relationship with their utilization in industry paper pulp: Detailed Study of Some species. Gembloux: INEAC, Technical Series, No. 43.

Istek, A., Tutus, A., & Gülsoy, S. K. (2009). The effect of tree age on fiber morphology of Pinus pinaster and paper properties. KSU Journal of Engineering Sciences, 12(1), 1-5.

Izekor, D. N., & Fuwape, J. A. (2011). Variations in the anatomical characteristics of plantation grown Tectona grandis wood in Edo State, Nigeria. Archives of Applied Science Research, 3(1), 83-90.

Kiaei, M., Tajik, M., & Vaysi, R. (2014). Chemical and biometrical properties of plum wood and its application in pulp and paper production. Maderas. Ciencia y tecnología, 16(3), 313-322.

Larsson, P. T., Lindström, T., Carlsson, L. A., & Fellers, C. (2018). Fiber length and bonding effects on tensile strength and toughness of kraft paper. Journal of Materials Science, 53(4), 3006-3015.

López, F., Alfaro, A., García, M. M., Díaz, M. J., Calero, A. M., & Ariza, J. (2004). Pulp and paper from tagasaste (Chamaecytisus proliferus LF ssp. palmensis). Chemical Engineering Research and Design, 82(8), 1029-1036.

Luce, G. E. (1970). The physics and chemistry of wood pulp fibers. STAP, 8, 278.

Nugroho, W. D., Marsoem, S. N., Yasue, K., Fujiwara, T., Nakajima, T., Hayakawa, M., Nakaba, S., Yamagishi, Y., Jin, H.O., Kubo, T., & Funada, R. (2012). Radial variations in the anatomical characteristics and density of the wood of Acacia mangium of five different provenances in Indonesia. Journal of Wood Science, 58(3), 185-194.

Ofosu, S., Boadu, K. B., & Afrifah, K. A. (2020). Suitability of Chrysophyllum albidum from moist semi-deciduous forest in Ghana as a raw material for manufacturing paper-based products. Journal of Sustainable Forestry, 39(2),153–66. DOI: https://doi.org/10.1080/10549811.2019.1623052

Ogbonnaya, C. I., Roy-Macauley, H., Nwalozie, M. C., & Annerose, D. J. M. (1997). Physical and histochemical properties of kenaf (Hibiscus cannabinus L.) grown under water deficit on a sandy soil. Industrial Crops and Products, 7(1), 9-18.

Ogunleye, B. M., Fuwape, J. A., Oluyege, A. O., Ajayi, B., & Fabiyi, J. S. (2017). Evaluation of fiber characteristics of Ricinodedron Heudelotii (Baill, Pierre Ex Pax) for pulp and paper making. International Journal of Science and Technology, 6(1), 634-641.

Ohshima, J., Yokota, S., Yoshizawa, N., & Ona, T. (2005). Examination of within-tree variations and the heights representing whole-tree values of derived wood properties for quasi-non-destructive breeding of Eucalyptus camaldulensis and Eucalyptus globulus as quality pulpwood. Journal of Wood Science, 51(2), 102-111.

Okoegwale, E. E., Idialu, J. E., Ehilen, O. E., & Ogie-Odia, E. A. (2020). Assessment of vessel and fiber characteristics of Blighia sapida Konig. and Lecaniodiscus cupanoides Planch ex Benth. growing in rainforest and derived savanna areas of Edo state, Nigeria. African Journal of Biological Sciences, 2(2), 58-69. DOI: https://doi.org/10.33472/AFJBS.2.2.2020.58-69

Omotoso, M. A., & Ogunsile, B. O. (2009). Fibre and chemical properties of some Nigerian grown Musa species for pulp production. Asian Journal of Materials Science, 1, 14-21.

Ona, T., Sonoda, T., Ito, K., Shibata, M., Tamai, Y., Kojima, K., Ohshima, J., Yokota, S., & Yoshizawa, N. (2001). Investigation of relationships between cell and pulp properties in Eucalyptus by examination of within-tree property variations. Wood Science and Technology, 35(3), 229-243.

Onggo, H., & Astuti, J. T. (2005). The effect of sodium hydroxide and hydrogen peroxide on the yield and color of pulp from pineapple leaf fiber. Journal of Tropical Wood Science and Technology, 3(1), 37-43.

Orwa, C., Mutua, A., Kindt, R., Jamnadass, R., & Anthony, S. (2009). Agroforestree Database: a tree reference and selection guide version 4.0. World Agroforestry Centre, Kenya.

Pearson, G., & Richards, D. (Eds.) (1998). The ecology of industry: Sectors and linkages. National Academies Press.

Petro, R., Ndomba, O. A., Chidege, M. Y., Laswai, F., & Nyaradani, G. (2016). Basic density and its variation in Olea capensis established in matrix with Grevillea robusta grown in Meru-Usa Forest Plantation, Tanzania. International Journal of Agriculture and Forestry, 6(1), 8-11.

Pirralho, M., Flores, D., Sousa, V. B., Quilhó, T., Knapic, S., & Pereira, H. (2014). Evaluation on paper making potential of nine Eucalyptus species based on wood anatomical features. Industrial Crops and Products, 54, 327-334.

Rana, R., Langenfeld-Heyser, R., Finkeldey, R., & Polle, A. (2009). Functional anatomy of five endangered tropical timber wood species of the family Dipterocarpaceae. Trees, 23(3), 521-529.

Riki, J. T. B., Sotannde, O. A., & Oluwadare, A. O. (2019). Anatomical and chemical properties of wood and their practical implications in pulp and paper production: A review. Journal of Research in Forestry, Wildlife and Environment, 11(3), 358-368.

Rodríguez, A., Moral, A., Serrano, L., Labidi, J., & Jiménez, L. (2008). Rice straw pulp obtained by using various methods. Bioresource technology, 99(8), 2881-2886.

Rowell, R. M. (2012). Handbook of wood chemistry and wood composites. CRC press.

Salmenoja, K., & Makela, K. (2000). “Chlorine-induced superheater corrosion in boilers fired with biomass,” In: Proceedings of the fifth European Conference on Industrial Furnaces and Boilers, April 2000, INFUB, Porto, Portugal.

San, H. P., Long, L. K., Zhang, C. Z., Hui, T. C., Seng, W. Y., Lin, F. S., Hun, A. T., & Fong, W. K. (2016). Anatomical features, fiber morphological, physical and mechanical properties of three years old new hybrid Paulownia: Green Paulownia. Research Journal of Forestry 10(1), 30–35. DOI: https://doi.org/10.3923/rjf.2016.30.35

Sangumbe, L. M. V., Pereira, M., Carrillo, I., & Mendonça, R. T. (2018). An exploratory evaluation of the pulpability of Brachystegia spiciformis and Pericopsis angolensis from the angolan miombo woodlands. Maderas. Ciencia y tecnología, 20(2), 183-198. DOI: https://doi.org/10.4067/S0718-221X201800500230

Santos, A., Amaral, M. E., Vaz, A., Anjos, O., & Rogério, S. (2008). Effect of Eucalyptus globulus wood density on papermaking potential. Tappi Journal, 25-32.

Santos, A., Anjos, O., Amaral, M. E., Gil, N., Pereira, H., & Simões, R. (2012). Influence on pulping yield and pulp properties of wood density of Acacia melanoxylon. Journal of wood science, 58(6), 479-486.

Shackford, L. D. (2003). A comparison of pulping and bleaching of kraft softwood and eucalyptus pulps. In 36th international pulp and paper congress and exhibition. Sao Paul Brazil.

Sharma, A. K., Dutt, D., Upadhaya, J. S., & Roy, T. K. (2011). Anatomical, morphological and chemical characterization of Bambusa tulda, Dendrocalamus hamiltonii, Bambusa balcooa, Malocana baccifera, Bambusa arundinacea and Eucalyptus tereticornis. BioResources 6(4), 5062–5073.

Sharma, M., Sharma, C. L., Bage, M., Gogoi, B. R., & Pangging, G. (2018). Anatomical Characteristics and Fibre Dimensions of Some Grass Species of Arunachal Pradesh and their Potential for Pulp and Paper. Journal of Bioresources 5(1), 41–48.

Smook, G. A. (1997). Handbook for Pulp & Paper Technologists. Vancouver, Angus Wilde Publications.

Takeuchi, R., Wahyudi, I., Aiso, H., Ishiguri, F., Istikowati, W. T., Ohkubo, T., Ohshima, J., Iizuka, K., & Yokota, S. (2016). Wood properties related to pulp and paper quality in two Macaranga species naturally regenerated in secondary forests, Central Kalimantan, Indonesia. Tropics, 25 (3), 107-115. DOI: https://doi.org/10.3759/tropics.MS15-23

Technical Association of the Pulp and Paper Industry (TAPPI) Test Method T258 om-11. (2011). Basic Density of Wood and Pulp. In: Tappi Test Methods. Atlanta, GA.

Tiseo, L. (2021). Global Paper Consumption 2020 – 2030. Statista. Available at https://www.statista.com/statistics/1089078/demand-paper-globally-until-2030/

Tran, A. V. (2006). Chemical analysis and pulping study of pineapple crown leaves. Industrial Crops and Product, 24(1), 66–74.

Tutuş, A., Kazaskeroğlu, Y., & Çiçekler, M. (2015). Evaluation of tea wastes in usage pulp and paper production. BioResources, 10(3), 5407-5416.

Varghese, M., Nicodemus, A., Ramteke, P. K., Anbazhagi, G., Bennet, S. S. R., & Subramanian, K. (2000). Variation in growth and wood traits among nine populations of teak in Peninsular India. Silvae Genetica, 49(4/5), 201-205.

Ververis, C., Georghiou, K., Christodoulakis, N., Santas, P., & Santas, R. (2004). Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Industrial crops and products, 19(3), 245-254.

Zawawi, D., Mohd, Z., Angzzas, S., & Ashuvila, M. A. (2014). Analysis of the chemical compositions and fiber morphology of pineapple (Ananas comosus) leaves in Malaysia. Journal of Applied Sciences, 14(12), 1355-1358. DOI: https://doi.org/10.3923/jas.2014.1355.1358

Zhan, H., Tang, G. J., Wang, C. M., & Wang, S. G. (2015). Chemical properties and fiber morphology of Fargesia fungosa at different culm ages and heights. BioResources, 10(3), 5666-5676. DOI: https://doi.org/10.15376/biores.10.3.5666-5676

Downloads

Published

15.11.2021

How to Cite

Afrifah, K. A., & Adjei-Mensah, E. (2021). Anatomical and chemical characterization of Alstonia boonei for pulp and paper production: Anatomske in kemijske lastnosti lesa vrste Alstonia boonei za proizvodnjo celuloze in papirja. Les/Wood, 70(2), 5–18. https://doi.org/10.26614/les-wood.2021.v70n02a02

Issue

Section

Articles