Air permeability of thermally modified hemlock wood

Plinska permeabilnost termično modificiranega lesa zahodne čuge

Authors

  • Yaohui Liu Department of Wood Science, Faculty of Forestry, University of British Columbia
  • Stavros Avramidis Department of Wood Science, Faculty of Forestry, University of British Columbia

Keywords:

wood, thermal modification, western hemlock, longitudinal air permeability, specific permeability, temperature effect

Abstract

Western hemlock (Tsuga heterophylla) is a prevalent coastal species in British Columbia (BC). Its wood has a high potential for thermal modification, a process that can affect numerous physical properties, including air permeability. The current study investigates the longitudinal air permeability of hemlock wood modified at three temperature levels, 170 °C, 212 °C, and 230 °C, and a two-hour treatment length. Permeability values obtained using Darcy’s law and the water-falling volume displacement method were positively correlated with treatment temperature up to 212 °C, after which the permeability decreased slightly. ANOVA followed by the Duncan test revealed that thermal treatment at 212 °C and 230 °C significantly increased air permeability, whereas it was insignificant at 170 °C.

Downloads

Download data is not yet available.

References

Alden, H. (1995). Softwoods of North America, FPL-GTR-102. Madison, WI. U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory, 151pp.

Bahmani, M., & Schmidt, O. (2018). Plant essential oils for environment-friendly protection of wood objects against fungi. Maderas. Ciencia y tecnología, 20(3), 325-332.

Bahmani, M., Schmidt, O., Fathi, L., & Frühwald, A. (2016). Environment-friendly short-term protection of palm wood against mould and rot fungi. Wood Material Science & Engineering, 11(4), 239-247.

Chu, D., Mu, J., Avramidis, S., Rahimi, S., Liu, S., & Lai, Z. (2019a). Functionalized

surface layer on poplar wood fabricated by fire retardant and thermal densification.

Part 1: compression recovery and flammability. Forests, 10(11), 955.

Chu, D., Mu, J., Avramidis, S., Rahimi, S., Liu, S., & Lai, Z. (2019b). Functionalized surface layer on poplar wood fabricated by fire retardant and thermal densification. Part 2: dynamic wettability and bonding strength. Forests, 10(11), 982.

Donath, S., Militz, H., & Mai, C. (2006). Creating water-repellent effects on wood by modification with silanes. Holzforschung, 60(1), 40-46.

Dong, H., Bahmani, M., Rahimi, S., & Humar, M. (2020). Influence of copper and biopolymer/Saqez resin on the properties of poplar wood. Forests, 11(6), 667.

Esteves, B., & Pereira, H. (2009). Wood modification by heat treatment: A review. BioResources, 4(1), 370-404.

Hermawan, A., Sakagami, H., Sobri, S. A., Amini, M. H. M., Ramle, S. F. M., & Rasid, S. (2020). The effects of drying temperatures on preservative retention and penetration of some Malaysian fast-growing species timbers. Drying Technology, 39(4), 566-75.

Hill, C. A. (2006). Wood modification: chemical, thermal, and other processes (Vol. 5). Chichester, John Wiley & Sons, 237 pp.

Hill, C. A. S., Jones, D., Strickland, G., & Cetin, N. S. (1999). Kinetic and mechanistic aspects of the acetylation of wood with acetic anhydride. Holzforschung, 52(6), 623-629.

Kang, C. W., Li, C., Jang, E. S., Jang, S. S., & Kang, H. Y. (2018). Changes in sound absorption capability and air permeability of Malas (Homalium foetidum) specimens after high temperature heat treatment. Journal of the Korean Wood Science and Technology, 46(2), 149-54.

Lin, R.T. & Kozlik, C.J. 1971. Permeability and drying behavior of western hemlock. Proc. 22 nd Annual Meeting Western Dry Kiln Club, pp. 44-50. Oregon State Univer., Corvallis, OR.

Mansouryar, E., Karimi, A., Ebrahimi, G., Mirshokraei, A., & Rahimi, S. (2010). Water repelling Populus Alba by emulsion of paraffin, Quaternary ammonium and hydrated starch. IJWP, 25, 211–222. (In Farsi)

Nourian, S., & Avramidis, S. (2021). Exploratory thermal modification of western hemlock. Wood Material Science & Engineering, 16(4), 221-228.

Perre, P. (2007). Fundamental Wood Drying. European COST. Nancy, France, 366pp.

Poonia, P. K., Tripathi, S., Sihag, K., & Kumar, S. (2015). Effect of microwave treatment on air permeability and preservative impregnation of Eucalyptus tereticornis wood. Journal of the Indian Academy of Wood Science, 12(2), 89-93.

Rahimi, S., Singh, K., DeVallance, D., Chu, D., & Bahmani, M. (2022). Drying behavior of hardwood components (sapwood, heartwood, and bark) of red oak and yellow-poplar. Forests, 13(5), 722.

Rahimi, S., Singh, K, & DeVallance, D. (2019). Effect of different hydrothermal treatments (steam and hot compressed water) on physical properties and drying behavior of yellow poplar (Liriodendron tulipifera). Forest Products Journal, 69, 42-52.

Rahimi, S., Faezipour, M., & Tarmian, A. (2011). Drying of internal-check prone poplar lumber using three different conventional kiln drying schedules. Journal of the Indian Academy of Wood Science, 8(1), 6-10.

Rhatigan, R. G., Milota, M. R., Morrell, J. J., & Lavery, M. R. (2003). Effect of high temperature drying on permeability and treatment of western hemlock lumber. Forest products journal, 53.

Rousset, P., Perré, P., & Girard, P. (2004). Modification of mass transfer properties in poplar wood (P. robusta) by a thermal treatment at high temperature. Holz als Roh-und Werkstoff, 62(2), 113-9.

Siau, J. F. (1995). Wood-Influence of moisture on wood properties. Blacksburg, Va.: Dept. of Wood Science and Forest Products, Virginia Polytechnic Institute and State University.

Taghiyari, H. R., & Malek, B. M. (2014). Effect of heat treatment on longitudinal air and liquid permeability of circular and square-shaped native hardwood specimens. Heat and Mass Transfer, 50(8), 1125-36.

Ward, J. C., & Pong, W. Y. (1980). Wetwood in trees: a lumber resource problem. USDA Forest Service General Technical Report PNW 112, Pacific North West Forest Range Station, Portland, Oregon, 56pp.

Yuan, L. (1994). Heat treatment of Eucalyptus wood and its permeability improvement. China Wood Industry, 1994; 8(3), 30-3. (In Chinese).

Downloads

Published

04.11.2022

How to Cite

Liu, Y., & Avramidis, S. (2022). Air permeability of thermally modified hemlock wood: Plinska permeabilnost termično modificiranega lesa zahodne čuge. Les/Wood, 71(2). Retrieved from https://journals.uni-lj.si/les-wood/article/view/11325

Issue

Section

Articles