The synergistic effect of microwave drying and plasma surface treatments on the wettability of green wood
Sinergistični učinek mikrovalovnega sušenja in obdelave s plazmo na omočljivost svežega lesa
DOI:
https://doi.org/10.26614/les-wood.2022.v71n01a01Keywords:
Norway spruce wood, Wood drying, Microwave processing, Gliding arc plasmaAbstract
In spite of being both a one-step solution to several problems associated with woodworking and also energy efficient, the application of microwave (MW) modification in wood research has remained very limited and this promising method has practically no use in wood industries across the globe. Research done so far in this field primarily sheds light on its potential in enhancing wood permeability, treatability and uniform wood drying. While MW treatments are mostly used on wet or green wood, another modification technique, plasma, has potential benefits to synergistically enhance the effects of MW treatment, but so far has not been applied on wet or green wood specimens. This study takes a first step to investigate the effects of plasma treatments (PT) on green wood specimens, as well as combinations of MW and plasma treatments. As a preliminary study, the methodology focuses on water contact angle measurements, since these are most commonly used as indicators for surface modifications in industrial applications. An exponential time dependence was found for the contact angle on the investigated samples of Norway spruce (Picea abies Karst.). Initial contact angles after droplet deposition increased due to drying and migration of organic molecules during treatments. In comparison with the literature, the effect of plasma was significantly less pronounced on wet wood specimens. The initial contact angles showed the lowest statistical variations after MW treatment, whereas plasma increased inhomogeneities. The final contact angles on treated specimens was lowest for PT-only specimens as well as specimens treated with plasma after MW. In contrast to the initial contact angles, the final contact angles showed the lowest variations after PT. Wetting rates were insignificantly improved by plasma, with reduced statistical variations after all treatments.
Downloads
References
Avramidis, G., Wascher, R., Militz, H., & Viöl, W. (2016). Impact of air-plasma treatment at atmospheric pressure on wood and wood extractives. International Wood Products Journal, 7 (2), 76-79. DOI: https://doi.org/10.1080/20426445.2016.1162429 DOI: https://doi.org/10.1080/20426445.2016.1162429
Awoyemi, L. (2004). Effects of microwave modification on the kiln drying time of Eucalyptus obliqua wood. Journal of Indian Academy of Wood Science, 1, 83-88.
Balboni, B. M., Ozarska, B., Garcia, J. N., & Torgovnikov, G. (2018). Microwave treatment of Eucalyptus macrorhyncha timber for reducing drying defects and its impact on physical and mechanical wood. European Journal of Wood and Wood Products, 76, 861–870. DOI: https://doi.org/10.1007/s00107-017-1260-1 DOI: https://doi.org/10.1007/s00107-017-1260-1
Bartoli, M., Frediani, M., Briens, C., Berruti, F., & Rosi, L. (2019). An overview of temperature issues in microwave-assisted pyrolysis. Processes, 7 (10), 658. DOI: https://doi.org/10.3390/pr7100658 DOI: https://doi.org/10.3390/pr7100658
Boehme, C., & Hora, G. (1996). Water absorption and contact angle measurement of native European, North American and tropical wood species to predict gluing properties. Holzforschung, 50 (3), 269-276. DOI: https://doi.org/10.1515/hfsg.1996.50.3.269 DOI: https://doi.org/10.1515/hfsg.1996.50.3.269
Brodie, G. (2010). Wood: Microwave modification of properties. Encycl. Agric. Food Biol. Eng., 2010, 1878–1881. DOI: https://doi.org/10.1081/E-EAFE2-120045810
Dahle, S., Žigon, J., Petrič, M., & Kariž, M. (2020a). Plasma treatment of spruce wood changes its dielectric properties. Les/Wood, 69 (2), 83-95. DOI: https://doi.org/10.26614/les-wood.2020.v69n02a03 DOI: https://doi.org/10.26614/les-wood.2020.v69n02a03
Dahle, S., Žigon, J., Gospodarič, B., Zaplotnik, R., Merhar, M., & Petrič, M. (2020b). Open-source integrated plasma treatment and CNC machining system. Zenodo. DOI: https://doi.org/10.5281/zenodo.4280597
Dahle, S., Ganguly, S., Žigon, J., Srinivasa, K., & Petrič, M. (2021). Raw and analyzed data for the manuscript "The synergistic effect of microwave drying and plasma surface treatments on the wettability of green wood". (1.0.0) [Data set]. Zenodo. DOI: https://doi.org/10.5281/zenodo.5835738 DOI: https://doi.org/10.26614/les-wood.2022.v71n01a01
ISO standard EN 13183-1:2002 Moisture content of a piece of sawn timber - Part 1: Determination by oven dry method.
Ganguly, S., Hom, S. K., Tripathi, S., Ghosh, S., Kanyal, R., & Samani, A. (2021a). Quantitative evaluation of microwave irradiation on short-rotation plantation wood species. Maderas Ciencia y Tecnologia, 23, 1–14. DOI: https://doi.org/10.4067/S0718-221X2021000100425
Ganguly, S., Balzano, A., Petrič, M., Kržišnik, D., Tripathi, S., Žigon, J., & Merela, M. (2021b). Effects of different energy intensities of microwave treatment on heartwood and sapwood microstructures in Norway spruce. Forests, 2021 (12), 598. DOI: https://doi.org/10.3390/f12050598 DOI: https://doi.org/10.3390/f12050598
Guanben, D., Siqun, W., & Zhiyong, C. (2005). Microwave drying of wood strands. Drying Technology, 23, 1–16. DOI: https://doi.org/10.1080/07373930500340494
Haase, J. G., Leung, L. H., & Evans, P. D. (2019). Plasma pre-treatments to improve the weather resistance of polyurethane coatings on black spruce wood. Coatings, 9 (1), 8. DOI: https://doi.org/10.3390/coatings9010008 DOI: https://doi.org/10.3390/coatings9010008
Hämäläinen, K., & Kärki, T. (2013). Effects of atmospheric plasma treatment on the surface properties of wood-plastic composites. Advanced Materials Research, 718-720, 176-185. DOI: https://doi.org/10.4028/www.scientific.net/AMR.718-720.176 DOI: https://doi.org/10.4028/www.scientific.net/AMR.718-720.176
He, S., Lin, L., Fu, F., Zhou, Y., & Fan, M. (2014). Microwave treatment for enhancing the liquid permeability of Chinese fir. BioResources, 9 (2), 1924-1938. DOI: https://doi.org/10.15376/biores.9.2.1924-1938
Hermoso, E., & Vega, A. (2016). Effect of microwave treatment on the impregnability and mechanical properties of eucalyptus globulus wood. Maderas Ciencia y Tecnologia, 18, 55–64. DOI: https://doi.org/10.4067/S0718-221X2016005000006
Herron, J. T., & Green, D. S. (2001). Chemical kinetics database and predictive schemes for nonthermal humid air plasma chemistry. Part II. Neutral species reactions. Plasma Chemistry and Plasma Processing, 21, 459–481. DOI: https://doi.org/10.1023/A:1011082611822 DOI: https://doi.org/10.1023/A:1011082611822
Hong-Hai, L., Qing-Wen, W., Lin, Y., Tao J., & Ying-Chun, C. (2005). Modification of larch wood by intensive microwave irradiation. Journal of Forestry Research, 16, 237–240. DOI: https://doi.org/10.1007/BF02856823 DOI: https://doi.org/10.1007/BF02856823
Kalnins, M., Katzenberger, C., Schmieding, S., & Brooks, J. (1988). Contact angle measurement on wood using videotape technique. Journal of Colloid and Interface Science, 125 (1), 344–346. DOI: https://doi.org/10.1016/0021-9797(88)90084-7 DOI: https://doi.org/10.1016/0021-9797(88)90084-7
Klarhöfer, L., Viöl, W., & Maus-Friedrichs, W. (2010). Electron spectroscopy on plasma treated lignin and cellulose. Holzforschung, 64, 331-336. DOI: https://doi.org/10.1515/hf.2010.048 DOI: https://doi.org/10.1515/hf.2010.048
Král, P., Ráhel, J., Stupavská, M., Šrajer, J., Klímek, P., Mishra, P. K., & Wimmer, R. (2015). XPS depth profile of plasma-activated surface of beech wood (Fagus sylvatica) and its impact on polyvinyl acetate tensile shear bond strength. Wood Science and Technology, 49, 319-330. DOI: https://doi.org/10.1007/s00226-014-0691-7 DOI: https://doi.org/10.1007/s00226-014-0691-7
Krapež Tomec, D., Žigon, J., Kitek Kuzman, M., Dahle, S., Šernek, M., & Kariž, M. (2021). Effect of plasma treatment of 3D printed parts on bonding to wood with PVAc adhesive. Polymers, 13 (8), 1211. DOI: https://doi.org/10.3390/polym13081211 DOI: https://doi.org/10.3390/polym13081211
Liu, H. H., Wang, Q. W., Yang, L., Jiang, T., & Cai, Y. C. (2005). Modification of larch wood by intensive microwave irradiation. Journal of Forestry Research, 16 (3), 237-240. DOI: https://doi.org/10.1007/BF02856823. DOI: https://doi.org/10.1007/BF02856823
Mekhtiev, M. A., & Torgovnikov, G. (2004). Method of check analysis of microwave-modified wood. Wood Science and Technology, 38 (7), 507-519. DOI: https://doi.org/10.1007/s00226-004-0259-z DOI: https://doi.org/10.1007/s00226-004-0259-z
Melamies, I. A. (2014). Feeling the rush of speed - New impregnation process for race skis. JOT International Surface Technology, 3.2014, 32-35. DOI: https://doi.org/10.1365/s35724-014-0291-y
Oloyede, A., & Groombridge, P. (2000). The Influence of microwave heating on the mechanical properties of wood. Journal of Materials Processing Technology, 100, 67–73. DOI: https://doi.org/10.1016/S0924-0136(99)00454-9
Ouertani, S., Hassini, L., Azzouz, S., Torres, S. S., Belghith, A., & Koubaa, A. (2015). Modeling of combined microwave and convective drying of wood: prediction of mechanical behavior via internal gas pressure. Drying Technology, 33, 1234-1242. DOI: https://doi.org/10.1080/07373937.2015.1022828 DOI: https://doi.org/10.1080/07373937.2015.1022828
Papp, E. A., & Csiha, C. (2017). Contact angle as function of surface roughness of different wood species. Surfaces and Interfaces, 8, 54-59. DOI: https://doi.org/10.1016/j.surfin.2017.04.009 DOI: https://doi.org/10.1016/j.surfin.2017.04.009
Prysiazhnyi, V., Zaporojchen, V., Kersten, H., & Černák, M. (2012). Influence of humidity on atmospheric pressure air plasma treatment of aluminium surfaces. Applied Surface Science, 258 (14), 5467-5471. DOI: https://doi.org/10.1016/j.apsusc.2012.02.040 DOI: https://doi.org/10.1016/j.apsusc.2012.02.040
Rehn, P., Wolkenhauer, A., Bente, M., Förster, S., & Viöl, W. (2003). Wood surface modification in dielectric barrier discharges at atmospheric pressure. Surface and Coatings Technology, 174–175, 515-518. DOI: https://doi.org/10.1016/S0257-8972(03)00372-4 DOI: https://doi.org/10.1016/S0257-8972(03)00372-4
Riedl, B., Angel, C., Prégent, J., Blanchet, P., & Stafford, L. (2014). Effect of wood surface modification by atmospheric-pressure plasma on waterborne coating adhesion. Bioresources, 9 (3), 4908-4923. DOI: https://doi.org/10.15376/biores.9.3.4908-4923
Sakiyama, Y., Graves, D. B., Chang, H.-W., Shimizu, T., & Morfill, G. E. (2012). Plasma chemistry model of surface microdischarge in humid air and dynamics of reactive neutral species. Journal of Physics D: Applied Physics, 45 (42), 425201. DOI: https://doi.org/10.1088/0022-3727/45/42/425201 DOI: https://doi.org/10.1088/0022-3727/45/42/425201
Samani, A., Ganguly, S., Kanyal, R., & Tripathi, S. (2019). Effect of microwave pre-treatment on preservative retention and treatability of Melia composita wood. Journal of Forest Science, 65, 391–396. DOI: https://doi.org/10.17221/39/2019-JFS
Sethy, A. K., Torgovnikov, G., Vinden, P., & Przewloka, S. (2016). Moisture conditioning of wood using a continuous microwave dryer. Drying Technology, 34, 318–323. DOI: https://doi.org/10.1080/07373937.2015.1052502
Šernek, M. (2002). Influence of drying temperature on properties of wood surfaces. Zbornik gozdarstva in lesarstva, 67, 173-191. http://eprints.gozdis.si/id/eprint/315
Terziev, N., Daniel, G., Torgovnikov, G., & Vinden, P. (2020). Effect of microwave treatment on the wood structure of Norway spruce and radiata pine. Bioresources, 15 (3), 5616-5626. DOI: https://doi.org/10.15376/biores.15.3.5616-5626 DOI: https://doi.org/10.15376/biores.15.3.5616-5626
Torgovnikov, G., & Vinden, P. (2009). High-intensity microwave wood modification for increasing permeability. Forest Products Journal, 59, 84–92.
Torgovnikov, G., & Vinden, P. (2010). Microwave wood modification technology and its applications. Forest Products Journal, 60, 173–182. DOI: https://doi.org/10.13073/0015-7473-60.2.173
Treu, A., Rieche, H., & Militz, H. (2008). Spruce and pine heartwood treatment by means of microwave radiation. In: Proceedings of the 39th Annual Meeting the International Research Group on Wood Protection, 2008.
Wascher, R., Avramidis, G., & Viöl, W. (2021). Plywood made from plasma-treated veneers: investigation of performance differences between plasma-pretreated and untreated beech veneers at comparable melamine resin load. Forests, 12 (10), 1423. DOI: https://doi.org/10.3390/f12101423 DOI: https://doi.org/10.3390/f12101423
Weng, X., Zhou, Y., Fu, Z., Gao, X., Zhou, F., & Jiang, J. (2021). Effects of microwave pretreatment on drying of 50 mm-thickness Chinese fir lumber. Journal of Wood Science, 67, 1–9. DOI: https://doi.org/10.1186/s10086-021-01942-2
Weng, X., Zhou, Y., Fu, Z., Gao, X., Zhou, F., & Fu, F. (2020). Effects of microwave treatment on microstructure of Chinese fir. Forests, 11, 772. DOI: https://doi.org/10.3390/f11070772 DOI: https://doi.org/10.3390/f11070772
Žigon, J., Petrič, M., & Dahle, S. (2018). Dielectric barrier discharge (DBD) plasma pretreatment of lignocellulosic materials in air at atmospheric pressure for their improved wettability: A literature review. Holzforschung, 72 (11), 979-991. DOI: https://doi.org/10.1515/hf-2017-0207 DOI: https://doi.org/10.1515/hf-2017-0207
Žigon, J., Pavlič, M., Kibleur, P., van den Bulcke, J., Petrič, M., van Acker, J., & Dahle, S. (2020a). Treatment of wood with atmospheric plasma discharge: study of the treatment process, dynamic wettability and interactions with a waterborne coating. Holzforschung, 75 (7), 603-613. DOI: https://doi.org/10.1515/hf-2020-0182 DOI: https://doi.org/10.1515/hf-2020-0182
Žigon, J., Kovač, J., Zaplotnik, R., Saražin, J., Šernek, M., Petrič, M., & Dahle S. (2020b). Enhancement of strength of adhesive bond between wood and metal using atmospheric plasma treatment. Cellulose, 27, 6411-6424. DOI: https://doi.org/10.1007/s10570-020-03212-8 DOI: https://doi.org/10.1007/s10570-020-03212-8
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.