Sorption properties of wood impregnated with the fire retardant Burnblock
Sorpcijske lastnosti lesa, impregniranega z ognjezadrževalnim sredstvom Burnblock
DOI:
https://doi.org/10.26614/les-wood.2022.v71n01a02Keywords:
fire retardants, Burnblock, wood, sorption properties, laser confocal microscopyAbstract
The sorption properties of wood have a characteristic influence on some of its properties, such as the mechanical properties and susceptibility to fungal decay. Moist wood is more susceptible to fungal decay, and wood is often impregnated in order to protect it from fungal decomposition, photodegradation or fire. In particular, inorganic salts affect the sorption properties of wood. For this purpose, the sorption properties of Norway spruce wood impregnated with Burnblock refractory (uptake 38 kg/m³) were investigated. The microscopic analysis confirmed the presence of crystals of this in the cell lumina of wood tissue. Sorption properties were determined using an instrument capable of dynamic vapour sorption (DVS) assessment. DVS analysis confirmed that the sorption properties of impregnated spruce wood are comparable to those of non-impregnated spruce wood. However, the higher hysteresis at higher relative humidity is probably due to the presence of crystals in the cell lumina.
Downloads
References
Blahovec, J., & Yanniotis, S. (2008). Gab generalized equation for sorption phenomena. Food and Bioprocess Technology, 1(1), 82–90. DOI: https://doi.org/10.1007/s11947-007-0012-3
Engelund, E. T., Thygesen, L. G., Svensson, S., & Hill, C. A. S. (2013). A critical discussion of the physics of wood-water interactions. Wood Science and Technology, 47(1), 141–161. DOI: https://doi.org/10.1007/s00226-012-0514-7
Gerhards, C. C. (1982). Effect of Moisture Content and Temperature on the Mechanical Properties of Wood: An Analysis of Immediate Effects. Wood and Fiber, 14(1), 4–36.
Glass, S. V., Boardman, C. R., Thybring, E. E., & Zelinka, S. L. (2018). Quantifying and reducing errors in equilibrium moisture content measurements with dynamic vapor sorption (DVS) experiments. Wood Science and Technology, 52(4), 909–927. DOI: https://doi.org/10.1007/s00226-018-1007-0
Gryc, V., Vavrčík, H., & Horn, K. (2011). Density of juvenile and mature wood of selected coniferous species. Journal of Forest Science, 57(3), 123–130. DOI: https://doi.org/10.17221/18/2010-jfs
Hartley, I. D., Kamke, F. A., & Peemoeller, H. (1992). Cluster theory for water sorption in wood. Wood Science and Technology, 26(2), 83–99. DOI: https://doi.org/10.1007/BF00194465
Humar, M. (2013). Influence of Norway spruce and European larch heartwood ring-width on extractive content and durability. Drvna Industrija, 64(2). DOI: https://doi.org/10.5552/drind.2013.1244
Isaksson, T., Thelandersson, S., Ekstrand-Tobin, A., & Johansson, P. (2010). Critical conditions for onset of mould growth under varying climate conditions. Building and Environment, 45(7), 1712–1721. DOI: https://doi.org/10.1016/j.buildenv.2010.01.023
Khali, D. P., & Rawat, S. P. S. (2000). Clustering of water molecules during adsorption of water in brown rot decayed and undecayed wood blocks of Pinus sylvestris. Holz Als Roh - Und Werkstoff, 58(5), 340–341. DOI: https://doi.org/10.1007/s001070050441
Lesar, B., Gorišek, Ž., & Humar, M. (2009). Sorption properties of wood impregnated with boron compounds, sodium chloride and glucose. Drying Technology, 27(1). DOI: https://doi.org/10.1080/07373930802565947
Mangel, A. (2000). Identifying physical and chemical phenomena with gravimetric water sorption analysis. Journal of Thermal Analysis and Calorimetry, 62(2), 529–537. DOI: https://doi.org/10.1023/A:1010183407622
Medved, S., Jones, D., Faelled, P., Pirs, D., Humar, M., & Lesar, B. (2019). Investigation of fire-retardant additive on particleboard properties. Proceedings of the International Panel Products Symposium 2019, 141–148.
Meyer, L., Brischke, C., Treu, A., & Larsson-Brelid, P. (2016). Critical moisture conditions for fungal decay of modified wood by basidiomycetes as detected by pile tests. Holzforschung, 70(4), 331–339. DOI: https://doi.org/10.1515/hf-2015-0046
Mitchell, P. H. (2018). Calculating the equilibrium moisture content for wood based on humidity measurements. BioResources, 13(1), 171–175. DOI: https://doi.org/10.15376/biores.13.1.171-175
Nordic Wood Preservation Council. (2021). List no 99.
Schmidt, O. (2006). Wood and tree fungi: Biology, damage, protection, and use. In Wood and Tree Fungi: Biology, Damage, Protection, and Use. Springer-Verlag Berlin Heidelberg. DOI: https://doi.org/10.1007/3-540-32139-X
Wagenführ, R. (2014). Holzatlas. 4th Edition. In IAWA Journal. Fachbuchverlag.
White, R. H., & Dietenberger, M. A. (2010). Fire safety of wood construction. In Wood Handbook - Wood as an engineering material (pp. 1–22). U.S.D.A. Forest service, Forest products Laboratory. http://www.fpl.fs.fed.us/documnts/fplgtr/fplgtr113/fplgtr113.htm
Willeitner, H. (2001). Current national approaches to defining retentions in use. COST E22.
Willems, W. (2018). Hygroscopic wood moisture: single and dimerized water molecules at hydroxyl-pair sites? Wood Science and Technology, 52(3), 777–791. DOI: https://doi.org/10.1007/s00226-018-0998-x
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.