Sorption properties of wood impregnated with the fire retardant Burnblock

Sorpcijske lastnosti lesa, impregniranega z ognjezadrževalnim sredstvom Burnblock


  • Miha Humar
  • Boštjan Lesar
  • Davor Kržišnik



fire retardants, Burnblock, wood, sorption properties, laser confocal microscopy


The sorption properties of wood have a characteristic influence on some of its properties, such as the mechanical properties and susceptibility to fungal decay. Moist wood is more susceptible to fungal decay, and wood is often impregnated in order to protect it from fungal decomposition, photodegradation or fire. In particular, inorganic salts affect the sorption properties of wood. For this purpose, the sorption properties of Norway spruce wood impregnated with Burnblock refractory (uptake 38 kg/m³) were investigated. The microscopic analysis confirmed the presence of crystals of this in the cell lumina of wood tissue. Sorption properties were determined using an instrument capable of dynamic vapour sorption (DVS) assessment. DVS analysis confirmed that the sorption properties of impregnated spruce wood are comparable to those of non-impregnated spruce wood. However, the higher hysteresis at higher relative humidity is probably due to the presence of crystals in the cell lumina.


Download data is not yet available.


Blahovec, J., & Yanniotis, S. (2008). Gab generalized equation for sorption phenomena. Food and Bioprocess Technology, 1(1), 82–90. DOI: DOI:

Engelund, E. T., Thygesen, L. G., Svensson, S., & Hill, C. A. S. (2013). A critical discussion of the physics of wood-water interactions. Wood Science and Technology, 47(1), 141–161. DOI: DOI:

Gerhards, C. C. (1982). Effect of Moisture Content and Temperature on the Mechanical Properties of Wood: An Analysis of Immediate Effects. Wood and Fiber, 14(1), 4–36.

Glass, S. V., Boardman, C. R., Thybring, E. E., & Zelinka, S. L. (2018). Quantifying and reducing errors in equilibrium moisture content measurements with dynamic vapor sorption (DVS) experiments. Wood Science and Technology, 52(4), 909–927. DOI: DOI:

Gryc, V., Vavrčík, H., & Horn, K. (2011). Density of juvenile and mature wood of selected coniferous species. Journal of Forest Science, 57(3), 123–130. DOI: DOI:

Hartley, I. D., Kamke, F. A., & Peemoeller, H. (1992). Cluster theory for water sorption in wood. Wood Science and Technology, 26(2), 83–99. DOI: DOI:

Humar, M. (2013). Influence of Norway spruce and European larch heartwood ring-width on extractive content and durability. Drvna Industrija, 64(2). DOI: DOI:

Isaksson, T., Thelandersson, S., Ekstrand-Tobin, A., & Johansson, P. (2010). Critical conditions for onset of mould growth under varying climate conditions. Building and Environment, 45(7), 1712–1721. DOI: DOI:

Khali, D. P., & Rawat, S. P. S. (2000). Clustering of water molecules during adsorption of water in brown rot decayed and undecayed wood blocks of Pinus sylvestris. Holz Als Roh - Und Werkstoff, 58(5), 340–341. DOI: DOI:

Lesar, B., Gorišek, Ž., & Humar, M. (2009). Sorption properties of wood impregnated with boron compounds, sodium chloride and glucose. Drying Technology, 27(1). DOI: DOI:

Mangel, A. (2000). Identifying physical and chemical phenomena with gravimetric water sorption analysis. Journal of Thermal Analysis and Calorimetry, 62(2), 529–537. DOI: DOI:

Medved, S., Jones, D., Faelled, P., Pirs, D., Humar, M., & Lesar, B. (2019). Investigation of fire-retardant additive on particleboard properties. Proceedings of the International Panel Products Symposium 2019, 141–148.

Meyer, L., Brischke, C., Treu, A., & Larsson-Brelid, P. (2016). Critical moisture conditions for fungal decay of modified wood by basidiomycetes as detected by pile tests. Holzforschung, 70(4), 331–339. DOI: DOI:

Mitchell, P. H. (2018). Calculating the equilibrium moisture content for wood based on humidity measurements. BioResources, 13(1), 171–175. DOI: DOI:

Nordic Wood Preservation Council. (2021). List no 99.

Schmidt, O. (2006). Wood and tree fungi: Biology, damage, protection, and use. In Wood and Tree Fungi: Biology, Damage, Protection, and Use. Springer-Verlag Berlin Heidelberg. DOI: DOI:

Wagenführ, R. (2014). Holzatlas. 4th Edition. In IAWA Journal. Fachbuchverlag.

White, R. H., & Dietenberger, M. A. (2010). Fire safety of wood construction. In Wood Handbook - Wood as an engineering material (pp. 1–22). U.S.D.A. Forest service, Forest products Laboratory.

Willeitner, H. (2001). Current national approaches to defining retentions in use. COST E22.

Willems, W. (2018). Hygroscopic wood moisture: single and dimerized water molecules at hydroxyl-pair sites? Wood Science and Technology, 52(3), 777–791. DOI: DOI:







How to Cite

Humar, M., Lesar, B., & Kržišnik, D. (2022). Sorption properties of wood impregnated with the fire retardant Burnblock: Sorpcijske lastnosti lesa, impregniranega z ognjezadrževalnim sredstvom Burnblock. Les/Wood, 71(1), 15-22.

Similar Articles

1-10 of 112

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>