Sorption properties of wood impregnated with the fire retardant Burnblock

Sorpcijske lastnosti lesa, impregniranega z ognjezadrževalnim sredstvom Burnblock

Authors

  • Miha Humar
  • Boštjan Lesar
  • Davor Kržišnik

DOI:

https://doi.org/10.26614/les-wood.2022.v71n01a02

Keywords:

fire retardants, Burnblock, wood, sorption properties, laser confocal microscopy

Abstract

The sorption properties of wood have a characteristic influence on some of its properties, such as the mechanical properties and susceptibility to fungal decay. Moist wood is more susceptible to fungal decay, and wood is often impregnated in order to protect it from fungal decomposition, photodegradation or fire. In particular, inorganic salts affect the sorption properties of wood. For this purpose, the sorption properties of Norway spruce wood impregnated with Burnblock refractory (uptake 38 kg/m³) were investigated. The microscopic analysis confirmed the presence of crystals of this in the cell lumina of wood tissue. Sorption properties were determined using an instrument capable of dynamic vapour sorption (DVS) assessment. DVS analysis confirmed that the sorption properties of impregnated spruce wood are comparable to those of non-impregnated spruce wood. However, the higher hysteresis at higher relative humidity is probably due to the presence of crystals in the cell lumina.

Downloads

Download data is not yet available.

References

Blahovec, J., & Yanniotis, S. (2008). Gab generalized equation for sorption phenomena. Food and Bioprocess Technology, 1(1), 82–90. DOI: https://doi.org/10.1007/s11947-007-0012-3

Engelund, E. T., Thygesen, L. G., Svensson, S., & Hill, C. A. S. (2013). A critical discussion of the physics of wood-water interactions. Wood Science and Technology, 47(1), 141–161. DOI: https://doi.org/10.1007/s00226-012-0514-7

Gerhards, C. C. (1982). Effect of Moisture Content and Temperature on the Mechanical Properties of Wood: An Analysis of Immediate Effects. Wood and Fiber, 14(1), 4–36.

Glass, S. V., Boardman, C. R., Thybring, E. E., & Zelinka, S. L. (2018). Quantifying and reducing errors in equilibrium moisture content measurements with dynamic vapor sorption (DVS) experiments. Wood Science and Technology, 52(4), 909–927. DOI: https://doi.org/10.1007/s00226-018-1007-0

Gryc, V., Vavrčík, H., & Horn, K. (2011). Density of juvenile and mature wood of selected coniferous species. Journal of Forest Science, 57(3), 123–130. DOI: https://doi.org/10.17221/18/2010-jfs

Hartley, I. D., Kamke, F. A., & Peemoeller, H. (1992). Cluster theory for water sorption in wood. Wood Science and Technology, 26(2), 83–99. DOI: https://doi.org/10.1007/BF00194465

Humar, M. (2013). Influence of Norway spruce and European larch heartwood ring-width on extractive content and durability. Drvna Industrija, 64(2). DOI: https://doi.org/10.5552/drind.2013.1244

Isaksson, T., Thelandersson, S., Ekstrand-Tobin, A., & Johansson, P. (2010). Critical conditions for onset of mould growth under varying climate conditions. Building and Environment, 45(7), 1712–1721. DOI: https://doi.org/10.1016/j.buildenv.2010.01.023

Khali, D. P., & Rawat, S. P. S. (2000). Clustering of water molecules during adsorption of water in brown rot decayed and undecayed wood blocks of Pinus sylvestris. Holz Als Roh - Und Werkstoff, 58(5), 340–341. DOI: https://doi.org/10.1007/s001070050441

Lesar, B., Gorišek, Ž., & Humar, M. (2009). Sorption properties of wood impregnated with boron compounds, sodium chloride and glucose. Drying Technology, 27(1). DOI: https://doi.org/10.1080/07373930802565947

Mangel, A. (2000). Identifying physical and chemical phenomena with gravimetric water sorption analysis. Journal of Thermal Analysis and Calorimetry, 62(2), 529–537. DOI: https://doi.org/10.1023/A:1010183407622

Medved, S., Jones, D., Faelled, P., Pirs, D., Humar, M., & Lesar, B. (2019). Investigation of fire-retardant additive on particleboard properties. Proceedings of the International Panel Products Symposium 2019, 141–148.

Meyer, L., Brischke, C., Treu, A., & Larsson-Brelid, P. (2016). Critical moisture conditions for fungal decay of modified wood by basidiomycetes as detected by pile tests. Holzforschung, 70(4), 331–339. DOI: https://doi.org/10.1515/hf-2015-0046

Mitchell, P. H. (2018). Calculating the equilibrium moisture content for wood based on humidity measurements. BioResources, 13(1), 171–175. DOI: https://doi.org/10.15376/biores.13.1.171-175

Nordic Wood Preservation Council. (2021). List no 99.

Schmidt, O. (2006). Wood and tree fungi: Biology, damage, protection, and use. In Wood and Tree Fungi: Biology, Damage, Protection, and Use. Springer-Verlag Berlin Heidelberg. DOI: https://doi.org/10.1007/3-540-32139-X

Wagenführ, R. (2014). Holzatlas. 4th Edition. In IAWA Journal. Fachbuchverlag.

White, R. H., & Dietenberger, M. A. (2010). Fire safety of wood construction. In Wood Handbook - Wood as an engineering material (pp. 1–22). U.S.D.A. Forest service, Forest products Laboratory. http://www.fpl.fs.fed.us/documnts/fplgtr/fplgtr113/fplgtr113.htm

Willeitner, H. (2001). Current national approaches to defining retentions in use. COST E22.

Willems, W. (2018). Hygroscopic wood moisture: single and dimerized water molecules at hydroxyl-pair sites? Wood Science and Technology, 52(3), 777–791. DOI: https://doi.org/10.1007/s00226-018-0998-x

Downloads

Published

26.07.2022

Issue

Section

Articles

How to Cite

Humar, M., Lesar, B., & Kržišnik, D. (2022). Sorption properties of wood impregnated with the fire retardant Burnblock: Sorpcijske lastnosti lesa, impregniranega z ognjezadrževalnim sredstvom Burnblock. Les/Wood, 71(1), 15-22. https://doi.org/10.26614/les-wood.2022.v71n01a02

Most read articles by the same author(s)

1 2 > >>