Effects of natural ageing on selected physical and mechanical properties of structural timber
Vpliv naravnega staranja na izbrane fizikalne in mehanske lastnosti konstrukcijskega lesa
DOI:
https://doi.org/10.26614/les-wood.2022.v71n02a05Keywords:
wood, ageing, colour, hygroscopicity, dimensional stability, sorption, mechanical propertiesAbstract
After harvesting, wood in constructions undergoes an ageing process that depends, among other things, on exposure conditions. During its lifetime wood is subject to photodegradation, biodegradation, surface and internal structural changes, and ageing, which is reflected in changes in colour, chemical composition, hygroscopicity, dimensional stability, and mechanical properties. We present a literature review, with particular emphasis on the influence of exposure conditions on changes in wood properties, chemical and microstructural changes, and changes in colour, sorption, and mechanical properties. In general, ageing-related changes can be very slow and difficult to detect, in part because of the wide natural variability in wood properties. Knowledge of the changes in naturally aged wood is critical for preserving cultural heritage, evaluating the safety of wood structures, and planning their conservation. When planning maintenance, conservation, and restoration of cultural heritage, we can better understand the structural changes, moisture and stress deformation states of wood structures, and interactions with other building materials if we consider the ageing of structural wood.
Downloads
References
Ando, K., Hirashima, Y., Sugihara, M., Hirao, S., & Sasaki, Y. (2006). Microscopic processes of shearing fracture of old wood, examined using the acoustic emission technique. Journal of Wood Science, 52(6), 483–489. DOI: https://doi.org/10.1007/s10086-005-0795-7 DOI: https://doi.org/10.1007/s10086-005-0795-7
Attar-Hassan, G. (1976). The effect of ageing on the mechanical properties of eastern white pine. Bulletin of the Association for Preservation Technology, 8(3), 64. DOI: https://doi.org/10.2307/1493572 DOI: https://doi.org/10.2307/1493572
Balzano, A., Merela, M., & Čufar, K. (2022). Scanning electron microscopy protocol for studying anatomy of highly degraded waterlogged archaeological wood. Forests, 13(2), 161. DOI: https://doi.org/10.3390/f13020161 DOI: https://doi.org/10.3390/f13020161
Baron, T. (2009). Untersuchungen an ungeschädigten und durch Pilzbefall geschädigten Nadelholzbauteilen mit ausgewählten Prüfverfahren. (Investigations with selected test methods on undamaged softwood constructions and constructions damaged through fungal decay). (In German) Dissertation, Technische Universität Dresden.
Belec, A. (2017). Vpliv staranja na strukturne lastnosti hrasta (Diplomsko delo). Ljubljana: Biotehniška fakulteta, Oddelek za lesarstvo.
Borgin, K., Faix, O., & Schweers, W. (1975a). The effect of aging on lignins of wood. Wood Science and Technology, 9(3), 207–211. DOI: https://doi.org/10.1007/BF00364638 DOI: https://doi.org/10.1007/BF00364638
Borgin, K., Parameswaran, N., & Liese, W. (1975b). The effect of aging on the ultrastructure of wood. Wood Science and Technology, 9(2), 87–98. DOI: https://doi.org/10.1007/BF00353388 DOI: https://doi.org/10.1007/BF00353388
Buck, R. D. (1952). A Note on the effect of age on the hygroscopic behaviour of wood. Studies in Conservation, 1(1), 39–44. DOI: https://doi.org/10.1179/sic.1952.004 DOI: https://doi.org/10.1179/sic.1952.004
Burmester, A. (1967). Änderung von Festigkeitseigenschaften des Kiefernholzes durch Alterung / Changes in strength properties of pine wood by ageing / Variations des propriétés mécaniques du bois de pin par vieillissement: Mitteilung aus der Bundesanstalt für Materialprüfung (BAM), Berlin-Dahlem. Materials Testing, 9(7), 267–270. DOI: https://doi.org/10.1515/mt-1967-090703 DOI: https://doi.org/10.1515/mt-1967-090703
Campanella, L., Tomassetti, M., & Tomellini, R. (1991). Thermoanalysis of ancient, fresh and waterlogged woods. Journal of Thermal Analysis, 37(8), 1923–1932. DOI: https://doi.org/10.1007/BF01912224 DOI: https://doi.org/10.1007/BF01912224
Chowdhury, K. A., Preston, R. D., & White, R. K. (1967). Structural changes in some ancient Indian timbers. In: Proceedings of the Royal Society of London. Series B, Biological Sciences, 168(1011), 148–157. DOI: https://doi.org/10.1098/rspb.1967.0057
Čufar, K., Gričar, J., Zupančič, M., Koch, G., & Schmitt, U. (2008). Anatomy, cell wall structure and topochemistry of water-logged archaeological wood aged 5,200 and 4,500 years. IAWA Journal, 29(1), 55–68. DOI: https://doi.org/10.1163/22941932-90000170 DOI: https://doi.org/10.1163/22941932-90000170
Čufar, K., & Velušček, A. (2012). Les s koliščarskih naselbin na Ljubljanskem barju in njegov raziskovalni potencial. Les, 64(3/4), 49–56. URL: https://repozitorij.uni-lj.si/IzpisGradiva.php?id=68586
Deppe, H. J., & Rühl, H. (1993). Evaluation of historical construction timber. 1: Density and compression strength. Holz als Roh- und Werkstoff 51: 379–383 . DOI: https://doi.org/10.1007/BF02628232
Dremelj, M. (2018). Izbrane fizikalne lastnosti starega hrastovega konstrukcijskega lesa (Magistrsko delo). Ljubljana: Biotehniška fakulteta, Oddelek za lesarstvo.
Ehlbeck, J., & Görlacher, R. (1988). Erste Ergebnisse von Festigkeitsuntersuchungen an altem Konstruktionsholz (First results from investigations of strength on wood from old constructions). Erhalten historisch bedeutsamer Bauwerke. SFB, 315, 235–247.
Ehlbeck, J., & Görlacher, R. (1993). Probleme bei der Beurteilung der Tragfähigkeit von altem Konstruktionsholz (Problems with the evaluation of timber bearing capacity in old constructions). Erhalten historisch bedeutsamer Bauwerke. SFB, 315, 201–208.
Erhardt, D., Mecklenburg, M. F., Tumosa, C. S., & Olstad, T. M. (1996). New versus old wood: differences and similarities in physical, mechanical, and chemical properties. In: Bridgeland J (ed) International council of museums-committee for conservation 11th triennial meeting. James & James, London, pp 903–910.
Fengel, D. (1991). Aging and fossilization of wood and its components. Wood Science and Technology, 25(3), 153–177. DOI: https://doi.org/10.1007/BF00223468 DOI: https://doi.org/10.1007/BF00223468
Fengel, D., & Wegener, G. (1989). Wood: chemistry, ultrastructure, reactions. Berlin, New York; Walter de Gruyter.
Froidevaux, J., Volkmer, T., Ganne-Chédeville, C., Gril, J., & Navi, P. (2012). Viscoelastic behaviour of aged and non-aged spruce wood in the radial direction. Wood Material Science and Engineering, 7(1), 1–12. DOI: https://doi.org/10.1080/17480272.2011.629735 DOI: https://doi.org/10.1080/17480272.2011.629735
Fukada, E. (1965). Piezoelectric effect in wood and other crystalline polymers. In: Proceedings, Second Symposium on Nondestructive Testing of Wood, 143–170.
Ganne-Chédeville, C., Jääskeläinen, A.-S., Froidevaux, J., Hughes, M., & Navi, P. (2012). Natural and artificial ageing of spruce wood as observed by FTIR-ATR and UVRR spectroscopy. Holzforschung, 66(2). DOI: https://doi.org/10.1515/HF.2011.148 DOI: https://doi.org/10.1515/HF.2011.148
García Esteban, L., García Fernández, F., Guindeo Casasús, A., de Palacios de Palacios, P., & Gril, J. (2006). Comparison of the hygroscopic behaviour of 205-year-old and recently cut juvenile wood from Pinus sylvestris L. Annals of Forest Science, 63(3), 309–317. DOI: https://doi.org/10.1051/forest:2006010
Gawron, J., Szczęsna, M., Zielenkiewicz, T., & Gołofit, T. (2012). Cellulose crystallinity index examination in oak wood originated from antique woodwork. Drewno, 55 (188), 109–114.
Gereke, T., Anheuser, K., Lehmann, E., Kranitz, K., & Niemz, P. (2011). Moisture behaviour of recent and naturally aged wood. Wood Res, 56, 33–42.
Gorišek, Ž. (2009). Les: zgradba in lastnosti: njegova variabilnost in homogenost. Ljubljana: Biotehniška fakulteta, Oddelek za lesarstvo.
Hedges, J. I. (1989). The chemistry of archaeological wood. In: Rowell RM, Barbour RJ (eds) Archaeological wood: properties, chemistry, and preservation. Advances in Chemistry Series 225, American Chemical Society, Washington, 111–140. DOI: https://doi.org/10.1021/ba-1990-0225.ch005
Holz, D. (1981). Zum Alterungsverhalten des Werkstoffes Holz – einige Ansichten, Untersuchungen, Ergebnisse (Aging of wood—some aspects, investigations, results). Holztechnologie 22, 80–85.
Horie, H. (2002). Strength deterioration of recycled lumber collected from demolished wooden buildings in Hokkaido. Mokuzai Gakkaishi, 48(4), 280–287.
Hudson-McAulay, K. J. (2016). The structural and mechanical integrity of historic wood [PhD Thesis]. University of Glasgow.
Inagaki, T., Yonenobu, H., & Tsuchikawa, S. (2008). Near-infrared spectroscopic monitoring of the water adsorption/desorption orocess in modern and archaeological wood. Applied Spectroscopy, 62(8), 860–865. DOI: https://doi.org/10.1366/000370208785284312 DOI: https://doi.org/10.1366/000370208785284312
Kačík, F., Šmíra, P., Kačíková, D., Reinprecht, L., & Nasswettrová, A. (2014). Chemical changes in fir wood from old buildings due to ageing. Cellulose Chemistry and Technology, 48, 79–88.
Kavčič, Ž. (2019). Mehanske lastnosti starega hrastovega konstrukcijskega lesa (Diplomsko delo). Univerza v Ljubljani, Biotehniška fakulteta, Oddelek za lesarstvo.
Kawai, S., Yokoyama, M., Matsuo, M., & Sugiyama, J. (2008). Research on the aging of wood in RISH. Wood Science for Preservation of Cultural Heritage: Mechanical and Biological Factors. Braga, Portugal, 52–56.
Kim, Y. S., & Singh, A. P. (2000). Micromorphological characteristics of wood biodegradation in wet environments: A review. IAWA Journal, 21(2), 135–155. DOI: https://doi.org/10.1163/22941932-90000241 DOI: https://doi.org/10.1163/22941932-90000241
Kohara, J. (1955). Studies on the permanence of wood (X) Colorimetry on the old timbers by the trichromatic colorimeter. Journal of the Japanese Forestry Society, 37(2), 63–66.
Kohara, J., & Okamoto, H. (1955). Studies of Japanese old timbers. The Scientific Reports of the Saikyo University. Agriculture, 7, 9–20.
Kojiro, K., Furuta, Y., Ohkoshi, M., Ishimaru, Y., Yokoyama, M., Sugiyama, J., Kawai, S., Mitsutani, T., Ozaki, H., Sakamoto, M., & Imamura, M. (2008). Changes in micropores in dry wood with elapsed time in the environment. Journal of Wood Science, 54(6), 515–519. DOI: https://doi.org/10.1007/s10086-008-0973-5 DOI: https://doi.org/10.1007/s10086-008-0973-5
Kollmann, F., & Schmidt, E. (1962). Structural derangement and loss in strength of permanently stressed coniferous wood . Holz als Roh- und Werkstoff 20, 333-338. DOI: https://doi.org/10.1007/BF02608529
Kránitz, K. (2014). Effect of natural aging on wood. (PhD), ETH, Zurich. (DISS. ETH No. 21661)
Kránitz, K., Sonderegger, W., Bues, C. T., & Niemz, P. (2016). Effects of aging on wood: A literature review. Wood Science and Technology, 50(1), 7–22. DOI: https://doi.org/10.1007/s00226-015-0766-0 DOI: https://doi.org/10.1007/s00226-015-0766-0
Kurtoglu, A. (1983). The properties of sorption of old spruce timber. Holzforschung und Holzverwertung, 35(6), 125–126.
Lang, A. (2004). Charakterisierung des Altholzaufkommens in Deutschland (Characterisation of the waste wood situation in Germany). Dissertation, Universität Hamburg.
Lissner, K., & Rüg, W. (2004). Ergänzung bzw. Präzisierung der für die Nachweisführung zur Stand-und Tragsicherheit sowie Gebrauchstauglichkeit von Holzkonstruktionen in der Altbausubstanz maßgebenden Abschnitte der DIN 1052: August 2004. Büro Lißner, Ing.-Büro Rug.
Matsuo, M., Yokoyama, M., Umemura, K., Sugiyama, J., Kawai, S., Gril, J., Kubodera, S., Mitsutani, T., Ozaki, H., Sakamoto, M., & Imamura, M. (2011). Aging of wood: Analysis of color changes during natural aging and heat treatment. Holzforschung, 65(3). DOI: https://doi.org/10.1515/hf.2011.040 DOI: https://doi.org/10.1515/hf.2011.040
Narayanamurti, D., Ghosh, S. S., Prasad, B. N., & George, J. (1958). Note on examination of an old timber specimen. Holz Als Roh-Und Werkstoff, 16(7), 245–247. DOI: https://doi.org/10.1007/BF02617785
Narayanamurti, D., Prasad, B. N., & Verma, G. M. (1961). Untersuchungen an alten Hölzern—Dritte Mitteilung: Ein altes Pterocarpus-Holz aus Tirupathi. Holz Als Roh-Und Werkstoff, 19(2), 47–50. DOI: https://doi.org/10.1007/BF02618130
Nier, J. (1994). Experimentelle Festigkeitsuntersuchungen an alten Bauholzern und daraus abgeleitete Erkenntnisse zur Tragfähigkeitsbeurteilung (Experimental investigations of strength on old construction timber and therefrom deduced knowledge for bearing capacity estimation). Dissertation, Technische Hochschule Leipzig.
Noack, D., Schwab, E., & Bartz, A. (1973). Characteristics for a judgment of the sorption and swelling behavior of wood. Wood Science and Technology, 7(3), 218–236. DOI: https://doi.org/10.1007/BF00355552
Noguchi, T., Obataya, E., & Ando, K. (2011). Effects of ageing on the vibrational properties of akamatsu (Pinus densiflora) wood. Wood Culture and Science, Kyoto, 69.
Obataya, E. (2017). Effects of natural and artificial ageing on the physical and acoustic properties of wood in musical instruments. Journal of Cultural Heritage, 27, S63–S69. DOI: https://doi.org/10.1016/j.culher.2016.02.011 DOI: https://doi.org/10.1016/j.culher.2016.02.011
Pearson, C., Wazny, T., Kuniholm, P., Botic, K., Durman, A., & Seufer, K. (2014). Potential for a new multimillennial tree-ring chronology from subfossil Balkan river oaks. Radiocarbon, 56, S51–S59. DOI: https://doi.org/10.2458/azu_rc.56.18342 DOI: https://doi.org/10.2458/azu_rc.56.18342
Pishik, I., Fefilon, V., & Burkovskaya, V. (1971). Chemical composition and chemical properties of new and old wood. Lesnoi J, 14(6), 89–93.
Popescu, C.-M., Dobele, G., Rossinskaja, G., Dizhbite, T., & Vasile, C. (2007). Degradation of lime wood painting supports. Journal of Analytical and Applied Pyrolysis, 79(1–2), 71–77. DOI: https://doi.org/10.1016/j.jaap.2006.12.014 DOI: https://doi.org/10.1016/j.jaap.2006.12.014
Rede, V., Essert, S., Kocijan, M., & Dubravac, T. (2022). Influence of ageing on abrasion volume loss, density, and structural components of subfossil oak. Applied Sciences, 12(4), 1814. DOI: https://doi.org/10.3390/app12041814 DOI: https://doi.org/10.3390/app12041814
Rug, W., & Seemann, A. (1989). Ermittlung von Festigkeitskennwerten an alten Holzkonstruktionen. Holztechnologie, 30(2), 69–73.
Saito, Y., Shida, S., Ohta, M., Yamamoto, H., Tai, T., Ohmura, W., Makihara, H., Noshiro, S., & Goto, O. (2008). Deterioration character of aged timbers: insect damage and material aging of rafters in a historic building of Fukushoji-temple. Mokuzai Gakkaishi 54: 255–262. DOI: https://doi.org/10.2488/jwrs.54.255
Schulz, H., Bellmann, B., & Wagner, L. (1984). Druckholzanalyse in einem stark verkrümmten Fichtenbrett. Holz Als Roh- und Werkstoff, 42(3), 109–109. DOI: https://doi.org/10.1007/BF02628866 DOI: https://doi.org/10.1007/BF02628866
Singh, A., Kim, Y., & Chavan, R. (2019). Relationship of wood cell wall ultrastructure to bacterial degradation of wood. IAWA Journal, 40, 1–26. DOI: https://doi.org/10.1163/22941932-40190250 DOI: https://doi.org/10.1163/22941932-40190250
Stamm, A. J. (1956). Thermal degradation of wood and cellulose. Industrial & Engineering Chemistry, 48(3), 413–417. DOI: https://doi.org/10.1021/ie51398a022 DOI: https://doi.org/10.1021/ie51398a022
Straže, A., Dremelj, M., Žveplan, E., & Čufar, K. (2018). Spremembe fizikalnih lastnosti hrastovega lesa iz zgodovinskih konstrukcij v življenjski dobi. Les/Wood, 67(1), 5–14. DOI: https://doi.org/10.26614/les-wood.2018.v67n01a01 DOI: https://doi.org/10.26614/les-wood.2018.v67n01a01
Sundqvist, B. (2006). Determination of formic-acid and acetic acid concentrations formed during hydrothermal treatment of birch wood and its relation to colour, strength and hardness (B. Sundqvist, O. Karlsson, & U. Westermark, Trans.). Wood Science and Technology, v. 40(7), 549–561. DOI: https://doi.org/10.1007/s00226-006-0071-z DOI: https://doi.org/10.1007/s00226-006-0071-z
Tomassetti, M., Campanella, L., & Tomellini, R. (1990). Thermogravimetric analysis of ancient and fresh woods. Thermochimica Acta, 170, 51–65. DOI: https://doi.org/10.1016/0040-6031(90)80524-3 DOI: https://doi.org/10.1016/0040-6031(90)80524-3
Tsuchikawa, S., Yonenobu, H., & Siesler, H. W. (2005). Near-infrared spectroscopic observation of the ageing process in archaeological wood using a deuterium exchange method. Analyst, 130(3), 379–384. DOI: https://doi.org/10.1039/B412759E DOI: https://doi.org/10.1039/b412759e
Turkulin, H., & Živković, V. (2018). Microtensile testing of wood – influence of material properties, exposure and testing conditions on analysis of photodegradation. Drvna industrija, 69(2), 183–191. DOI: https://doi.org/10.5552/drind.2018.1757 DOI: https://doi.org/10.5552/drind.2018.1757
Van Zyl, J. D., Van Wyk, W. J., & Heunis, C. M. (1973). The effect of ageing on the mechanical and chemical properties of wood. In: IUFRO-5 Meeting: Wood in the Service of Man. Pretoria, 2, 1069–1080.
Weimar, H. (2000). Aspekte der stofflichen Charakterisierung von Altholz (Aspects of the material characterisation of aged wood). Msc thesis. Universität Hamburg
Yokoyama, M., Gril, J., Matsuo, M., Yano, H., Sugiyama, J., Clair, B., Kubodera, S., Mistutani, T., Sakamoto, M., Ozaki, H., Imamura, M., & Kawai, S. (2009). Mechanical characteristics of aged Hinoki wood from Japanese historical buildings. Physics and Heritage, 10(7), 601–611. DOI: https://doi.org/10.1016/j.crhy.2009.08.009 DOI: https://doi.org/10.1016/j.crhy.2009.08.009
Yonenobu, H., & Tsuchikawa, S. (2003). Near-Infrared spectroscopic comparison of antique and modern wood. Applied Spectroscopy, 57(11), 1451–1453. DOI: https://doi.org/10.1366/000370203322554635 DOI: https://doi.org/10.1366/000370203322554635
Zupanc Lipovec, E., Fajdiga, G., & Humar, M. (2021). Primerjava mehanskih lastnosti recentnega in 400 let starega lesa evropskega macesna. Les/Wood, 70(2), 31-40. DOI: https://doi.org/10.26614/les-wood.2021.v70n02a01 DOI: https://doi.org/10.26614/les-wood.2021.v70n02a01
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Matjaž Dremelj, Aleš Straže
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.