Life cycle assessment and opportunities to improve environmental impacts in the wood sector

Analiza življenjskega cikla in priložnosti za zmanjševanje vplivov lesne industrije na okolje


  • Katarina Remic Biotehniška fakulteta, Oddelek za lesarstvo
  • Matej Jošt



LCA, sustainability, life cycle, environmental impacts, circular economy, wood sector


Life cycle assessment (LCA) is a method that analyses the environmental impact of products or services throughout their life cycle – from the acquisition of raw materials to the end-of-life scenario in landfill. LCA consists of four phases that interact with each other and is standardized with ISO 14040:2006 and ISO 14044:2006. Due to its versatility and comprehensive nature with regard to strategic decision making, the use of LCA is growing rapidly, including in the wood sector.


Download data is not yet available.


Andersen, J. H., Rasmussen, N. L., & Ryberg, M. W. (2022). Comparative life cycle assessment of cross laminated timber building and concrete building with special focus on biogenic carbon. Energy and Buildings, 254, 111604. DOI: DOI:

Aryapratama, R., & Pauliuk, S. (2022). Life cycle carbon emissions of different land conversion and woody biomass utilization scenarios in Indonesia. Science of The Total Environment, 805, 150226. DOI: DOI:

Bucklin, O., Menges, A., Amtsberg, F., Drexler, H., Rohr, A., & Krieg, O. D. (2022). Mono-material wood wall: Novel building envelope using subtractive manufacturing of timber profiles to improve thermal performance and airtightness of solid wood construction. Energy and Buildings, 254, 111597. DOI: DOI:

Buffi, M., Prussi, M., & Scarlat, N. (2022). Energy and environmental assessment of hydrogen from biomass sources: Challenges and perspectives. Biomass and Bioenergy, 165, 106556. DOI: DOI:

Cascione, V., Roberts, M., Allen, S., Dams, B., Maskell, D., Shea, A., Walker, P., & Emmitt, S. (2022). Integration of life cycle assessments (LCA) in circular bio-based wall panel design. Journal of Cleaner Production, 344, 130938. DOI: DOI:

Cordier, S., Blanchet, P., Robichaud, F., & Amor, B. (2022). Dynamic LCA of the increased use of wood in buildings and its consequences: Integration of CO2 sequestration and material substitutions. Building and Environment, 226, 109695. DOI: DOI:

de Carvalho Araújo, C. K., Bigarelli Ferreira, M., Salvador, R., de Carvalho Araújo, C. K. C., Camargo, B. S., de Carvalho Araújo Camargo, S. K., de Campos, C. I., & Piekarski, C. M. (2022). Life cycle assessment as a guide for designing circular business models in the wood panel industry: A critical review. Journal of Cleaner Production, 355, 131729. DOI: DOI:

Duan, Z., Huang, Q., & Zhang, Q. (2022). Life cycle assessment of mass timber construction: A review. Building and Environment, 221, 109320. DOI: DOI:

Ellingsen, O., & Vildåsen, S. S. (2022). Developing circular business models: LCA and strategic choice. Procedia CIRP, 109, 437–442. DOI: DOI:

European Commission. Joint Research Centre. Institute for Environment and Sustainability. (2010). International Reference Life Cycle Data System (ILCD) Handbook general guide for life cycle assessment : detailed guidance. Publications Office.

Fimbres Weihs, G. A., Jones, J. S., Ho, M., Malik, R. H., Abbas, A., Meka, W., Fennell, P., & Wiley, D. E. (2022). Life cycle assessment of co-firing coal and wood waste for bio-energy with carbon capture and storage – New South Wales study. Energy Conversion and Management, 273, 116406. DOI: DOI:

Friedrich, D. (2022). Success factors of Wood-Plastic Composites (WPC) as sustainable packaging material: A cross-sector expert study. Sustainable Production and Consumption, 30, 506–517. DOI: DOI:

Füchsl, S., Rheude, F., & Röder, H. (2022). Life cycle assessment (LCA) of thermal insulation materials: A critical review. Cleaner Materials, 5, 100119. DOI: DOI:

Galimshina, A., Moustapha, M., Hollberg, A., Padey, P., Lasvaux, S., Sudret, B., & Habert, G. (2022). Bio-based materials as a robust solution for building renovation: A case study. Applied Energy, 316, 119102. DOI: DOI:

Hassan, S. R., Megahed, N. A., Abo Eleinen, O. M., & Hassan, A. M. (2022). Toward a national life cycle assessment tool: Generative design for early decision support. Energy and Buildings, 267, 112144. DOI: DOI:

Huang, Y., Lu, L., Ding, C., & Pan, M. (2022). Eco-friendly wood-plastic composites from laminate sanding dust and waste poly(propylene) food pails. Waste Management, 149, 96–104. DOI: DOI:

Hu, J., Skinner, C., Ormondroyd, G., & Thevenon, M. F. (2023). Life cycle assessment of a novel tannin-boron association for wood protection. Science of The Total Environment, 858, 159739. DOI: DOI:

ISO (2006). Environmental management — Life cycle assessment — Principles and framework (ISO 14040:2006).

ISO (2006). Environmental management — Life cycle assessment — Requirements and guidelines (ISO 14044:2006).

Ivanica, R., Risse, M., Weber-Blaschke, G., & Richter, K. (2022). Development of a life cycle inventory database and life cycle impact assessment of the building demolition stage: A case study in Germany. Journal of Cleaner Production, 338, 130631. DOI: DOI:

Khodaei, H., Olson, C., Patino, D., Rico, J., Jin, Q., & Boateng, A. (2022). Multi-objective utilization of wood waste recycled from construction and demolition (C&D): Products and characterization. Waste Management, 149, 228–238. DOI: DOI:

Klein, D., Wolf, C., Schulz, C., & Weber-Blaschke, G. (2015). 20 years of life cycle assessment (LCA) in the forestry sector: state of the art and a methodical proposal for the LCA of forest production. The International Journal of Life Cycle Assessment, 20(4), 556–575. DOI: DOI:

Kromoser, B., Reichenbach, S., Hellmayr, R., Myna, R., & Wimmer, R. (2022). Circular economy in wood construction – Additive manufacturing of fully recyclable walls made from renewables: Proof of concept and preliminary data. Construction and Building Materials, 344, 128219. DOI: DOI:

Liu, Z., Liu, T., Jiang, H., Zhang, X., Li, J., Shi, S. Q., & Gao, Q. (2022). Biomimetic lignin-protein adhesive with dynamic covalent/hydrogen hybrid networks enables high bonding performance and wood-based panel recycling. International Journal of Biological Macromolecules, 214, 230–240. DOI: DOI:

Mantau, U. (2012). Wood flows in Europe. CEPI, CEI-Bois.

Moretti, C. (2023). Reflecting on the environmental impact of the captured carbon feedstock. Science of The Total Environment, 854, 158694. DOI: DOI:

Pirc Barčić, Klarić, K., & Kruhak, T. (2022). The role of life cycle assesment in business and production processes in wood industry: a literature review. In Jelačić. Denis (Ed.), Controlling of business and production processes in forest based industry (1st ed., Vol. 1, pp. 47–64). WoodEMA, i.a.

Quintana-Gallardo, A., Schau, E. M., Niemelä, E. P., & Burnard, M. D. (2021). Comparing the environmental impacts of wooden buildings in Spain, Slovenia, and Germany. Journal of Cleaner Production, 329, 129587. DOI: DOI:

Rey-Álvarez, B., Sánchez-Montañés, B., & García-Martínez, A. (2022). Building material toxicity and life cycle assessment: A systematic critical review. Journal of Cleaner Production, 341, 130838. DOI: DOI:

Saadatian, S., Rodrigues, C., Freire, F., & Simões, N. (2022). Environmental and cost life-cycle approach to support selection of windows in early stages of building design. Journal of Cleaner Production, 363, 132624. DOI: DOI:



How to Cite

Remic, K., & Jošt, M. (2022). Life cycle assessment and opportunities to improve environmental impacts in the wood sector: Analiza življenjskega cikla in priložnosti za zmanjševanje vplivov lesne industrije na okolje. Les/Wood, 71(2), 57–66.