Life cycle assessment and opportunities to improve environmental impacts in the wood sector
Analiza življenjskega cikla in priložnosti za zmanjševanje vplivov lesne industrije na okolje
DOI:
https://doi.org/10.26614/les-wood.2022.v71n02a03Keywords:
LCA, sustainability, life cycle, environmental impacts, circular economy, wood sectorAbstract
Life cycle assessment (LCA) is a method that analyses the environmental impact of products or services throughout their life cycle – from the acquisition of raw materials to the end-of-life scenario in landfill. LCA consists of four phases that interact with each other and is standardized with ISO 14040:2006 and ISO 14044:2006. Due to its versatility and comprehensive nature with regard to strategic decision making, the use of LCA is growing rapidly, including in the wood sector.
Downloads
References
Andersen, J. H., Rasmussen, N. L., & Ryberg, M. W. (2022). Comparative life cycle assessment of cross laminated timber building and concrete building with special focus on biogenic carbon. Energy and Buildings, 254, 111604. DOI: https://doi.org/10.1016/J.ENBUILD.2021.111604 DOI: https://doi.org/10.1016/j.enbuild.2021.111604
Aryapratama, R., & Pauliuk, S. (2022). Life cycle carbon emissions of different land conversion and woody biomass utilization scenarios in Indonesia. Science of The Total Environment, 805, 150226. DOI: https://doi.org/10.1016/J.SCITOTENV.2021.150226 DOI: https://doi.org/10.1016/j.scitotenv.2021.150226
Bucklin, O., Menges, A., Amtsberg, F., Drexler, H., Rohr, A., & Krieg, O. D. (2022). Mono-material wood wall: Novel building envelope using subtractive manufacturing of timber profiles to improve thermal performance and airtightness of solid wood construction. Energy and Buildings, 254, 111597. DOI: https://doi.org/10.1016/J.ENBUILD.2021.111597 DOI: https://doi.org/10.1016/j.enbuild.2021.111597
Buffi, M., Prussi, M., & Scarlat, N. (2022). Energy and environmental assessment of hydrogen from biomass sources: Challenges and perspectives. Biomass and Bioenergy, 165, 106556. DOI: https://doi.org/10.1016/J.BIOMBIOE.2022.106556 DOI: https://doi.org/10.1016/j.biombioe.2022.106556
Cascione, V., Roberts, M., Allen, S., Dams, B., Maskell, D., Shea, A., Walker, P., & Emmitt, S. (2022). Integration of life cycle assessments (LCA) in circular bio-based wall panel design. Journal of Cleaner Production, 344, 130938. DOI: https://doi.org/10.1016/J.JCLEPRO.2022.130938 DOI: https://doi.org/10.1016/j.jclepro.2022.130938
Cordier, S., Blanchet, P., Robichaud, F., & Amor, B. (2022). Dynamic LCA of the increased use of wood in buildings and its consequences: Integration of CO2 sequestration and material substitutions. Building and Environment, 226, 109695. DOI: https://doi.org/10.1016/J.BUILDENV.2022.109695 DOI: https://doi.org/10.1016/j.buildenv.2022.109695
de Carvalho Araújo, C. K., Bigarelli Ferreira, M., Salvador, R., de Carvalho Araújo, C. K. C., Camargo, B. S., de Carvalho Araújo Camargo, S. K., de Campos, C. I., & Piekarski, C. M. (2022). Life cycle assessment as a guide for designing circular business models in the wood panel industry: A critical review. Journal of Cleaner Production, 355, 131729. DOI: https://doi.org/10.1016/J.JCLEPRO.2022.131729 DOI: https://doi.org/10.1016/j.jclepro.2022.131729
Duan, Z., Huang, Q., & Zhang, Q. (2022). Life cycle assessment of mass timber construction: A review. Building and Environment, 221, 109320. DOI: https://doi.org/10.1016/J.BUILDENV.2022.109320 DOI: https://doi.org/10.1016/j.buildenv.2022.109320
Ellingsen, O., & Vildåsen, S. S. (2022). Developing circular business models: LCA and strategic choice. Procedia CIRP, 109, 437–442. DOI: https://doi.org/10.1016/J.PROCIR.2022.05.275 DOI: https://doi.org/10.1016/j.procir.2022.05.275
European Commission. Joint Research Centre. Institute for Environment and Sustainability. (2010). International Reference Life Cycle Data System (ILCD) Handbook general guide for life cycle assessment : detailed guidance. Publications Office.
Fimbres Weihs, G. A., Jones, J. S., Ho, M., Malik, R. H., Abbas, A., Meka, W., Fennell, P., & Wiley, D. E. (2022). Life cycle assessment of co-firing coal and wood waste for bio-energy with carbon capture and storage – New South Wales study. Energy Conversion and Management, 273, 116406. DOI: https://doi.org/10.1016/J.ENCONMAN.2022.116406 DOI: https://doi.org/10.1016/j.enconman.2022.116406
Friedrich, D. (2022). Success factors of Wood-Plastic Composites (WPC) as sustainable packaging material: A cross-sector expert study. Sustainable Production and Consumption, 30, 506–517. DOI: https://doi.org/10.1016/J.SPC.2021.12.030 DOI: https://doi.org/10.1016/j.spc.2021.12.030
Füchsl, S., Rheude, F., & Röder, H. (2022). Life cycle assessment (LCA) of thermal insulation materials: A critical review. Cleaner Materials, 5, 100119. DOI: https://doi.org/10.1016/J.CLEMA.2022.100119 DOI: https://doi.org/10.1016/j.clema.2022.100119
Galimshina, A., Moustapha, M., Hollberg, A., Padey, P., Lasvaux, S., Sudret, B., & Habert, G. (2022). Bio-based materials as a robust solution for building renovation: A case study. Applied Energy, 316, 119102. DOI: https://doi.org/10.1016/J.APENERGY.2022.119102 DOI: https://doi.org/10.1016/j.apenergy.2022.119102
Hassan, S. R., Megahed, N. A., Abo Eleinen, O. M., & Hassan, A. M. (2022). Toward a national life cycle assessment tool: Generative design for early decision support. Energy and Buildings, 267, 112144. DOI: https://doi.org/10.1016/J.ENBUILD.2022.112144 DOI: https://doi.org/10.1016/j.enbuild.2022.112144
Huang, Y., Lu, L., Ding, C., & Pan, M. (2022). Eco-friendly wood-plastic composites from laminate sanding dust and waste poly(propylene) food pails. Waste Management, 149, 96–104. DOI: https://doi.org/10.1016/J.WASMAN.2022.06.012 DOI: https://doi.org/10.1016/j.wasman.2022.06.012
Hu, J., Skinner, C., Ormondroyd, G., & Thevenon, M. F. (2023). Life cycle assessment of a novel tannin-boron association for wood protection. Science of The Total Environment, 858, 159739. DOI: https://doi.org/10.1016/J.SCITOTENV.2022.159739 DOI: https://doi.org/10.1016/j.scitotenv.2022.159739
ISO (2006). Environmental management — Life cycle assessment — Principles and framework (ISO 14040:2006).
ISO (2006). Environmental management — Life cycle assessment — Requirements and guidelines (ISO 14044:2006).
Ivanica, R., Risse, M., Weber-Blaschke, G., & Richter, K. (2022). Development of a life cycle inventory database and life cycle impact assessment of the building demolition stage: A case study in Germany. Journal of Cleaner Production, 338, 130631. DOI: https://doi.org/10.1016/J.JCLEPRO.2022.130631 DOI: https://doi.org/10.1016/j.jclepro.2022.130631
Khodaei, H., Olson, C., Patino, D., Rico, J., Jin, Q., & Boateng, A. (2022). Multi-objective utilization of wood waste recycled from construction and demolition (C&D): Products and characterization. Waste Management, 149, 228–238. DOI: https://doi.org/10.1016/J.WASMAN.2022.06.021 DOI: https://doi.org/10.1016/j.wasman.2022.06.021
Klein, D., Wolf, C., Schulz, C., & Weber-Blaschke, G. (2015). 20 years of life cycle assessment (LCA) in the forestry sector: state of the art and a methodical proposal for the LCA of forest production. The International Journal of Life Cycle Assessment, 20(4), 556–575. DOI: https://doi.org/10.1007/s11367-015-0847-1 DOI: https://doi.org/10.1007/s11367-015-0847-1
Kromoser, B., Reichenbach, S., Hellmayr, R., Myna, R., & Wimmer, R. (2022). Circular economy in wood construction – Additive manufacturing of fully recyclable walls made from renewables: Proof of concept and preliminary data. Construction and Building Materials, 344, 128219. DOI: https://doi.org/10.1016/J.CONBUILDMAT.2022.128219 DOI: https://doi.org/10.1016/j.conbuildmat.2022.128219
Liu, Z., Liu, T., Jiang, H., Zhang, X., Li, J., Shi, S. Q., & Gao, Q. (2022). Biomimetic lignin-protein adhesive with dynamic covalent/hydrogen hybrid networks enables high bonding performance and wood-based panel recycling. International Journal of Biological Macromolecules, 214, 230–240. DOI: https://doi.org/10.1016/J.IJBIOMAC.2022.06.042 DOI: https://doi.org/10.1016/j.ijbiomac.2022.06.042
Mantau, U. (2012). Wood flows in Europe. CEPI, CEI-Bois.
Moretti, C. (2023). Reflecting on the environmental impact of the captured carbon feedstock. Science of The Total Environment, 854, 158694. DOI: https://doi.org/10.1016/J.SCITOTENV.2022.158694 DOI: https://doi.org/10.1016/j.scitotenv.2022.158694
Pirc Barčić, Klarić, K., & Kruhak, T. (2022). The role of life cycle assesment in business and production processes in wood industry: a literature review. In Jelačić. Denis (Ed.), Controlling of business and production processes in forest based industry (1st ed., Vol. 1, pp. 47–64). WoodEMA, i.a.
Quintana-Gallardo, A., Schau, E. M., Niemelä, E. P., & Burnard, M. D. (2021). Comparing the environmental impacts of wooden buildings in Spain, Slovenia, and Germany. Journal of Cleaner Production, 329, 129587. DOI: https://doi.org/10.1016/J.JCLEPRO.2021.129587 DOI: https://doi.org/10.1016/j.jclepro.2021.129587
Rey-Álvarez, B., Sánchez-Montañés, B., & García-Martínez, A. (2022). Building material toxicity and life cycle assessment: A systematic critical review. Journal of Cleaner Production, 341, 130838. DOI: https://doi.org/10.1016/J.JCLEPRO.2022.130838 DOI: https://doi.org/10.1016/j.jclepro.2022.130838
Saadatian, S., Rodrigues, C., Freire, F., & Simões, N. (2022). Environmental and cost life-cycle approach to support selection of windows in early stages of building design. Journal of Cleaner Production, 363, 132624. DOI: https://doi.org/10.1016/J.JCLEPRO.2022.132624 DOI: https://doi.org/10.1016/j.jclepro.2022.132624
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Katarina Remic, Matej Jošt
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.