Life cycle assessment and opportunities to improve environmental impacts in the wood sector

Analiza življenjskega cikla in priložnosti za zmanjševanje vplivov lesne industrije na okolje

Authors

  • Katarina Remic Biotehniška fakulteta, Oddelek za lesarstvo
  • Matej Jošt

DOI:

https://doi.org/10.26614/les-wood.2022.v71n02a03

Keywords:

LCA, sustainability, life cycle, environmental impacts, circular economy, wood sector

Abstract

Life cycle assessment (LCA) is a method that analyses the environmental impact of products or services throughout their life cycle – from the acquisition of raw materials to the end-of-life scenario in landfill. LCA consists of four phases that interact with each other and is standardized with ISO 14040:2006 and ISO 14044:2006. Due to its versatility and comprehensive nature with regard to strategic decision making, the use of LCA is growing rapidly, including in the wood sector.

Downloads

Download data is not yet available.

References

Andersen, J. H., Rasmussen, N. L., & Ryberg, M. W. (2022). Comparative life cycle assessment of cross laminated timber building and concrete building with special focus on biogenic carbon. Energy and Buildings, 254, 111604. DOI: https://doi.org/10.1016/J.ENBUILD.2021.111604 DOI: https://doi.org/10.1016/j.enbuild.2021.111604

Aryapratama, R., & Pauliuk, S. (2022). Life cycle carbon emissions of different land conversion and woody biomass utilization scenarios in Indonesia. Science of The Total Environment, 805, 150226. DOI: https://doi.org/10.1016/J.SCITOTENV.2021.150226 DOI: https://doi.org/10.1016/j.scitotenv.2021.150226

Bucklin, O., Menges, A., Amtsberg, F., Drexler, H., Rohr, A., & Krieg, O. D. (2022). Mono-material wood wall: Novel building envelope using subtractive manufacturing of timber profiles to improve thermal performance and airtightness of solid wood construction. Energy and Buildings, 254, 111597. DOI: https://doi.org/10.1016/J.ENBUILD.2021.111597 DOI: https://doi.org/10.1016/j.enbuild.2021.111597

Buffi, M., Prussi, M., & Scarlat, N. (2022). Energy and environmental assessment of hydrogen from biomass sources: Challenges and perspectives. Biomass and Bioenergy, 165, 106556. DOI: https://doi.org/10.1016/J.BIOMBIOE.2022.106556 DOI: https://doi.org/10.1016/j.biombioe.2022.106556

Cascione, V., Roberts, M., Allen, S., Dams, B., Maskell, D., Shea, A., Walker, P., & Emmitt, S. (2022). Integration of life cycle assessments (LCA) in circular bio-based wall panel design. Journal of Cleaner Production, 344, 130938. DOI: https://doi.org/10.1016/J.JCLEPRO.2022.130938 DOI: https://doi.org/10.1016/j.jclepro.2022.130938

Cordier, S., Blanchet, P., Robichaud, F., & Amor, B. (2022). Dynamic LCA of the increased use of wood in buildings and its consequences: Integration of CO2 sequestration and material substitutions. Building and Environment, 226, 109695. DOI: https://doi.org/10.1016/J.BUILDENV.2022.109695 DOI: https://doi.org/10.1016/j.buildenv.2022.109695

de Carvalho Araújo, C. K., Bigarelli Ferreira, M., Salvador, R., de Carvalho Araújo, C. K. C., Camargo, B. S., de Carvalho Araújo Camargo, S. K., de Campos, C. I., & Piekarski, C. M. (2022). Life cycle assessment as a guide for designing circular business models in the wood panel industry: A critical review. Journal of Cleaner Production, 355, 131729. DOI: https://doi.org/10.1016/J.JCLEPRO.2022.131729 DOI: https://doi.org/10.1016/j.jclepro.2022.131729

Duan, Z., Huang, Q., & Zhang, Q. (2022). Life cycle assessment of mass timber construction: A review. Building and Environment, 221, 109320. DOI: https://doi.org/10.1016/J.BUILDENV.2022.109320 DOI: https://doi.org/10.1016/j.buildenv.2022.109320

Ellingsen, O., & Vildåsen, S. S. (2022). Developing circular business models: LCA and strategic choice. Procedia CIRP, 109, 437–442. DOI: https://doi.org/10.1016/J.PROCIR.2022.05.275 DOI: https://doi.org/10.1016/j.procir.2022.05.275

European Commission. Joint Research Centre. Institute for Environment and Sustainability. (2010). International Reference Life Cycle Data System (ILCD) Handbook general guide for life cycle assessment : detailed guidance. Publications Office.

Fimbres Weihs, G. A., Jones, J. S., Ho, M., Malik, R. H., Abbas, A., Meka, W., Fennell, P., & Wiley, D. E. (2022). Life cycle assessment of co-firing coal and wood waste for bio-energy with carbon capture and storage – New South Wales study. Energy Conversion and Management, 273, 116406. DOI: https://doi.org/10.1016/J.ENCONMAN.2022.116406 DOI: https://doi.org/10.1016/j.enconman.2022.116406

Friedrich, D. (2022). Success factors of Wood-Plastic Composites (WPC) as sustainable packaging material: A cross-sector expert study. Sustainable Production and Consumption, 30, 506–517. DOI: https://doi.org/10.1016/J.SPC.2021.12.030 DOI: https://doi.org/10.1016/j.spc.2021.12.030

Füchsl, S., Rheude, F., & Röder, H. (2022). Life cycle assessment (LCA) of thermal insulation materials: A critical review. Cleaner Materials, 5, 100119. DOI: https://doi.org/10.1016/J.CLEMA.2022.100119 DOI: https://doi.org/10.1016/j.clema.2022.100119

Galimshina, A., Moustapha, M., Hollberg, A., Padey, P., Lasvaux, S., Sudret, B., & Habert, G. (2022). Bio-based materials as a robust solution for building renovation: A case study. Applied Energy, 316, 119102. DOI: https://doi.org/10.1016/J.APENERGY.2022.119102 DOI: https://doi.org/10.1016/j.apenergy.2022.119102

Hassan, S. R., Megahed, N. A., Abo Eleinen, O. M., & Hassan, A. M. (2022). Toward a national life cycle assessment tool: Generative design for early decision support. Energy and Buildings, 267, 112144. DOI: https://doi.org/10.1016/J.ENBUILD.2022.112144 DOI: https://doi.org/10.1016/j.enbuild.2022.112144

Huang, Y., Lu, L., Ding, C., & Pan, M. (2022). Eco-friendly wood-plastic composites from laminate sanding dust and waste poly(propylene) food pails. Waste Management, 149, 96–104. DOI: https://doi.org/10.1016/J.WASMAN.2022.06.012 DOI: https://doi.org/10.1016/j.wasman.2022.06.012

Hu, J., Skinner, C., Ormondroyd, G., & Thevenon, M. F. (2023). Life cycle assessment of a novel tannin-boron association for wood protection. Science of The Total Environment, 858, 159739. DOI: https://doi.org/10.1016/J.SCITOTENV.2022.159739 DOI: https://doi.org/10.1016/j.scitotenv.2022.159739

ISO (2006). Environmental management — Life cycle assessment — Principles and framework (ISO 14040:2006).

ISO (2006). Environmental management — Life cycle assessment — Requirements and guidelines (ISO 14044:2006).

Ivanica, R., Risse, M., Weber-Blaschke, G., & Richter, K. (2022). Development of a life cycle inventory database and life cycle impact assessment of the building demolition stage: A case study in Germany. Journal of Cleaner Production, 338, 130631. DOI: https://doi.org/10.1016/J.JCLEPRO.2022.130631 DOI: https://doi.org/10.1016/j.jclepro.2022.130631

Khodaei, H., Olson, C., Patino, D., Rico, J., Jin, Q., & Boateng, A. (2022). Multi-objective utilization of wood waste recycled from construction and demolition (C&D): Products and characterization. Waste Management, 149, 228–238. DOI: https://doi.org/10.1016/J.WASMAN.2022.06.021 DOI: https://doi.org/10.1016/j.wasman.2022.06.021

Klein, D., Wolf, C., Schulz, C., & Weber-Blaschke, G. (2015). 20 years of life cycle assessment (LCA) in the forestry sector: state of the art and a methodical proposal for the LCA of forest production. The International Journal of Life Cycle Assessment, 20(4), 556–575. DOI: https://doi.org/10.1007/s11367-015-0847-1 DOI: https://doi.org/10.1007/s11367-015-0847-1

Kromoser, B., Reichenbach, S., Hellmayr, R., Myna, R., & Wimmer, R. (2022). Circular economy in wood construction – Additive manufacturing of fully recyclable walls made from renewables: Proof of concept and preliminary data. Construction and Building Materials, 344, 128219. DOI: https://doi.org/10.1016/J.CONBUILDMAT.2022.128219 DOI: https://doi.org/10.1016/j.conbuildmat.2022.128219

Liu, Z., Liu, T., Jiang, H., Zhang, X., Li, J., Shi, S. Q., & Gao, Q. (2022). Biomimetic lignin-protein adhesive with dynamic covalent/hydrogen hybrid networks enables high bonding performance and wood-based panel recycling. International Journal of Biological Macromolecules, 214, 230–240. DOI: https://doi.org/10.1016/J.IJBIOMAC.2022.06.042 DOI: https://doi.org/10.1016/j.ijbiomac.2022.06.042

Mantau, U. (2012). Wood flows in Europe. CEPI, CEI-Bois.

Moretti, C. (2023). Reflecting on the environmental impact of the captured carbon feedstock. Science of The Total Environment, 854, 158694. DOI: https://doi.org/10.1016/J.SCITOTENV.2022.158694 DOI: https://doi.org/10.1016/j.scitotenv.2022.158694

Pirc Barčić, Klarić, K., & Kruhak, T. (2022). The role of life cycle assesment in business and production processes in wood industry: a literature review. In Jelačić. Denis (Ed.), Controlling of business and production processes in forest based industry (1st ed., Vol. 1, pp. 47–64). WoodEMA, i.a.

Quintana-Gallardo, A., Schau, E. M., Niemelä, E. P., & Burnard, M. D. (2021). Comparing the environmental impacts of wooden buildings in Spain, Slovenia, and Germany. Journal of Cleaner Production, 329, 129587. DOI: https://doi.org/10.1016/J.JCLEPRO.2021.129587 DOI: https://doi.org/10.1016/j.jclepro.2021.129587

Rey-Álvarez, B., Sánchez-Montañés, B., & García-Martínez, A. (2022). Building material toxicity and life cycle assessment: A systematic critical review. Journal of Cleaner Production, 341, 130838. DOI: https://doi.org/10.1016/J.JCLEPRO.2022.130838 DOI: https://doi.org/10.1016/j.jclepro.2022.130838

Saadatian, S., Rodrigues, C., Freire, F., & Simões, N. (2022). Environmental and cost life-cycle approach to support selection of windows in early stages of building design. Journal of Cleaner Production, 363, 132624. DOI: https://doi.org/10.1016/J.JCLEPRO.2022.132624 DOI: https://doi.org/10.1016/j.jclepro.2022.132624

Published

28.12.2022

Issue

Section

Articles

How to Cite

Remic, K., & Jošt, M. (2022). Life cycle assessment and opportunities to improve environmental impacts in the wood sector: Analiza življenjskega cikla in priložnosti za zmanjševanje vplivov lesne industrije na okolje. Les/Wood, 71(2), 57-66. https://doi.org/10.26614/les-wood.2022.v71n02a03