Use of wood-plastic composites in 4D printing technology
Uporaba lesno-plastičnih kompozitov v tehnologiji 4D tiska
DOI:
https://doi.org/10.26614/les-wood.2021.v70n02a05Keywords:
3D printing, 4D printing, wood-plastic composites, shape memory materialsAbstract
Three-dimensional (3D) printing with wood-plastic composites is already well known, and the use of wood in four-dimensional (4D) printing is being increasingly explored. 4D printing is an evolving area of additive technologies where, with the appropriate design of 3D printing and use of appropriate materials, we can create products that change shape and form dynamic structures when triggered externally. In 4D printing, the hygroscopicity of wood – usually considered a disadvantage – can be used as a positive property to design products that change their shape according to climatic conditions, especially humidity.
In this research, we used the FDM (fused deposition modelling) technology of 3D printing PLA (polylactic acid) and wood-plastic composites (wood-PLA) to produce specimens with different material proportions, whose response to changing climatic conditions we monitored. To monitor the change in shape, or curvature, we fabricated composite test specimens using the bimetal principle (actuators), in which we used PLA for the passive layer and wood-PLA for the active layer in different thickness ratios and exposed them to laboratory and external conditions.
The results showed that the wood content of the wood-plastic composites leads to dimensional changes in a changing climate, resulting in changes in the shape of the designed actuators. The change in shape depends on the thickness ratio of the layers in the two-layer actuator, the sorption of water vapor, and the wood content in the wood-plastic composite used.
Downloads
References
Ayrilmis, N., Kariz, M., Kwon, J. H., & Kitek Kuzman, M. (2019). Effect of printing layer thickness on water absorption and mechanical properties of 3D-printed wood/PLA composite materials. International Journal of Advanced Manufacturing Technology, 102(5–8), 2195–2200. DOI: https://doi.org/10.1007/s00170-019-03299-9 DOI: https://doi.org/10.1007/s00170-019-03299-9
Balatinecz, J. J., & Park, B. D. (1997). The effects of temperature and moisture exposure on the properties of wood-fiber thermoplastic composites. Journal of Thermoplastic Composite Materials, 10(5), 476–487. DOI: https://doi.org/10.1177/089270579701000504 DOI: https://doi.org/10.1177/089270579701000504
Chen, D., Liu, Q., Han, Z., Zhang, J., Song, H. L., Wang, K., … & Shi, Y. (2020). 4D Printing Strain Self-Sensing and Temperature Self-Sensing Integrated Sensor–Actuator with Bioinspired Gradient Gaps. Advanced Science, 7(13), 1–9. DOI: https://doi.org/10.1002/advs.202000584 DOI: https://doi.org/10.1002/advs.202000584
Cheng, T., Thielen, M., Poppinga, S., Tahouni, Y., Wood, D., Steinberg, T., Menges, A., & Speck, T. (2021). Bio-Inspired Motion Mechanisms: Computational Design and Material Programming of Self-Adjusting 4D-Printed Wearable Systems. Advanced Science. DOI: https://doi.org/10.1002/advs.202100411
Cheng, T., Wood, D., Wang, X., Yuan, P. F., & Menges, A. (2021). Programming material intelligence: an additive fabrication strategy for self-shaping Biohybrid components. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12413 LNAI, 36–45. DOI: https://doi.org/10.1007/978-3-030-64313-3_5 DOI: https://doi.org/10.1007/978-3-030-64313-3_5
Chu, H., Yang, W., Sun, L., Cai, S., Yang, R., Liang, W., Yu, H., & Liu, L. (2020). 4D printing: A review on recent progresses. In Micromachines (Vol. 11, Issue 9). MDPI AG. DOI: https://doi.org/10.3390/MI11090796 DOI: https://doi.org/10.3390/mi11090796
Correa, D., Papadopoulou, A., Guberan, C., Jhaveri, N., Reichert, S., Menges, A., & Tibbits, S. (2015). 3D-Printed Wood: Programming Hygroscopic Material Transformations. 3D Printing and Additive Manufacturing, 2(3), 106–116. DOI: https://doi.org/10.1089/3dp.2015.0022 DOI: https://doi.org/10.1089/3dp.2015.0022
Correa, D., Poppinga, S., Mylo, M. D., Westermeier, A. S., Bruchmann, B., Menges, A., & Speck, T. (2020). 4D pine scale: Biomimetic 4D printed autonomous scale and flap structures capable of multi-phase movement. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 378(2167). DOI: https://doi.org/10.1098/rsta.2019.0445 DOI: https://doi.org/10.1098/rsta.2019.0445
El-Dabaa, R., & Salem, I. (2021). 4D printing of wooden actuators: encoding FDM wooden filaments for architectural responsive skins. Open House International, ahead-of-print(ahead-of-print). DOI: https://doi.org/10.1108/OHI-02-2021-0028 DOI: https://doi.org/10.1108/OHI-02-2021-0028
Erb, R. M., Sander, J. S., Grisch, R., & Studart, A. R. (2013). Self-shaping composites with programmable bioinspired microstructures. Nature Communications 2013 4:1, 4(1), 1–8. DOI: https://doi.org/10.1038/ncomms2666 DOI: https://doi.org/10.1038/ncomms2666
Faruk, O., Bledzki, A. K., Fink, H. P., & Sain, M. (2012). Biocomposites reinforced with natural fibers: 2000-2010. Progress in Polymer Science, 37(11), 1552–1596. DOI: https://doi.org/10.1016/j.progpolymsci.2012.04.003 DOI: https://doi.org/10.1016/j.progpolymsci.2012.04.003
Kariž, M., Šernek, M., & Kitek Kuzman, M. (2018a). Effect of humidity on 3d-printed specimens from wood-pla filaments.
Kariž, M., Šernek, M., Obućina, M., & Kuzman, M. K. (2018b). Effect of wood content in FDM filament on properties of 3D printed parts. Materials Today Communications, 14, 135–140. DOI: https://doi.org/10.1016/J.MTCOMM.2017.12.016 DOI: https://doi.org/10.1016/j.mtcomm.2017.12.016
Krapež Tomec, D., Straže, A., Haider, A., & Kariž, M. (2021). Hygromorphic Response Dynamics of 3D-Printed Wood-PLA Composite Bilayer Actuators. Polymers, 13, 3209. DOI: https://doi.org/10.3390/polym13193209
Le Duigou, A., & Castro, M. (2015). Moisture-induced self-shaping flax-reinforced polypropylene biocomposite actuator. Industrial Crops and Products, 71, 1–6. DOI: https://doi.org/10.1016/j.indcrop.2015.03.077 DOI: https://doi.org/10.1016/j.indcrop.2015.03.077
Le Duigou, A., & Castro, M. (2017). Hygromorph BioComposites: Effect of fibre content and interfacial strength on the actuation performances. Industrial Crops and Products, 99, 142–149. DOI: https://doi.org/10.1016/j.indcrop.2017.02.004 DOI: https://doi.org/10.1016/j.indcrop.2017.02.004
Le Duigou, A., Castro, M., Bevan, R., & Martin, N. (2016). 3D printing of wood fibre biocomposites: From mechanical to actuation functionality. Materials & Design, 96, 106–114. DOI: https://doi.org/10.1016/J.MATDES.2016.02.018 DOI: https://doi.org/10.1016/j.matdes.2016.02.018
Le Duigou, A., Requile, S., Beaugrand, J., Scarpa, F., & Castro, M. (2017). Natural fibres actuators for smart bio-inspired hygromorph biocomposites. Smart Materials and Structures, 26(12), 125009. DOI: https://doi.org/10.1088/1361-665X/aa9410
Le Duigou, A., Correa, D., Ueda, M., Matsuzaki, R., & Castro, M. (2020). A review of 3D and 4D printing of natural fibre biocomposites. In Materials and Design (Vol. 194). Elsevier Ltd. DOI: https://doi.org/10.1016/j.matdes.2020.108911 DOI: https://doi.org/10.1016/j.matdes.2020.108911
Le Duigou, A., Requile, S., Beaugrand, J., Scarpa, F., & Castro, M. (2017). Natural fibres actuators for smart bio-inspired hygromorph biocomposites. Smart Materials and Structures, 26(12), 125009. DOI: https://doi.org/10.1088/1361-665X/aa9410 DOI: https://doi.org/10.1088/1361-665X/aa9410
Manen, T. van, Janbaz, S., & Zadpoor, A. A. (2017). Programming 2D/3D shape-shifting with hobbyist 3D printers. Materials Horizons, 4(6), 1064–1069. DOI: https://doi.org/10.1039/C7MH00269F DOI: https://doi.org/10.1039/C7MH00269F
Martikka, O., Kärki, T., & Wu, Q. L. (2018). Mechanical Properties of 3D-Printed Wood-Plastic Composites. Key Engineering Materials, 777, 499–507. DOI: https://doi.org/10.4028/www.scientific.net/KEM.777.499
Rayate, A., & Jain, P. K. (2018). A Review on 4D Printing Material Composites and Their Applications. Materials Today: Proceedings, 5(9), 20474–20484. DOI: https://doi.org/10.1016/J.MATPR.2018.06.424 DOI: https://doi.org/10.1016/j.matpr.2018.06.424
Reichert, S., Menges, A., & Correa, D. (2015). Meteorosensitive architecture: Biomimetic building skins based on materially embedded and hygroscopically enabled responsiveness. Computer-Aided Design, 60, 50–69. DOI: https://doi.org/10.1016/j.cad.2014.02.010 DOI: https://doi.org/10.1016/j.cad.2014.02.010
Rüggeberg, M., & Burgert, I. (2015). Bio-Inspired Wooden Actuators for Large Scale Applications. PLOS ONE, 10(4), e0120718. DOI: https://doi.org/10.1371/JOURNAL.PONE.0120718 DOI: https://doi.org/10.1371/journal.pone.0120718
Ryan, K. R., Down, M. P., & Banks, C. E. (2021). Future of additive manufacturing: Overview of 4D and 3D printed smart and advanced materials and their applications. Chemical Engineering Journal, 403, 126162. DOI: https://doi.org/10.1016/J.CEJ.2020.126162 DOI: https://doi.org/10.1016/j.cej.2020.126162
Timoshenko, S. P. (1953). The Collected Papers of Stephen P. Timoshenko. (Book, 1953) [WorldCat.org]. (n.d.). Retrieved June 10, 2021, from https://www.worldcat.org/title/collected-papers-of-stephen-p-timoshenko/oclc/472247871
Vazquez, E., Randall, C., & Duarte, J. P. (2019). Shape-changing Architectural Skins A Review on Materials, Design and Fabrication Strategies and Performance Analysis. Journal of Facade Design and Engineering, 7(2), 93–114. DOI: https://doi.org/10.7480/jfde.2019.2.3877
Zhou, J., & Sheiko, S. S. (2016). Reversible shape-shifting in polymeric materials. Journal of Polymer Science, Part B: Polymer Physics, 54(14), 1365–1380. DOI: https://doi.org/10.1002/polb.24014 DOI: https://doi.org/10.1002/polb.24014
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Daša Krapež Tomec

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.