Comparison of mechanical properties of recent and 400-year-old European larch wood
Primerjava mehanskih lastnosti recentnega in 400 let starega lesa evropskega macesna
DOI:
https://doi.org/10.26614/les-wood.2021.v70n02a01Keywords:
wood, European larch (Larix decidua), fatigue, Ruard's Mansion, old woodAbstract
Wood has been the leading building material throughout the history of mankind. Wood has several advantages over other construction materials, which also makes it one of the most promising materials of the future. The environmental aspect also plays a major role today, as wood is a natural, renewable resource whose processing is very energy-intensive. Due to its repeated and widespread use in construction, the prediction of mechanical properties and their change over time is also very well known, as the overall safety of all buildings also depends on it. Therefore, we compared the mechanical properties of fresh European larch (Larix decidua) and 400-year-old larch found in the Ruard manor house on the Stara Sava in Jesenice, where the renovation of the Upper Sava Museum is currently underway. In order to predict what will happen to the fresh wood over the long term, it is necessary to expose the wood to the same conditions, i.e. to change it with dynamic loads or material fatigue. The effect of aging on flexural strength has not been confirmed. Fatigue results show that old wood withstood about 18 times fewer load cycles than recent larch wood.
Downloads
References
Brus, R. (2012). Drevesne vrste na Slovenskem. 2. izdaja. Ljubljana: Mladinska knjiga.
CEN. (1993). EN 310 – Wood Based Panels - Determination of modulus of elasticity in bending and of bending strength. European Committee for Standardisation, Brussels, Belgium, 8.
CEN. (2016). European Standard EN 350 - Durability of wood and wood-based products. Testing and classification of the durability to biological agents of wood and wood-based materials.
Čufar, K., & Velušček, A. (2012). Les s koliščarskih naselbin na Ljubljanskem barju in njegov raziskovalni potencial. Les, 64 (3-4), 49-56. https://repozitorij.uni-lj.si/IzpisGradiva.php?id=68586&lang=slv&prip=dkum:1742412:d1
Čufar, K., Gorišek, Ž., Merela, M., Kropivšek, J., Gornik Bučar, D., & Straže, A. (2017). Lastnosti bukovine in njena raba. Les / Wood, 66 (1), 27-39. DOI: https://doi.org/10.26614/les-wood.2017.v66n01a03 DOI: https://doi.org/10.26614/les-wood.2017.v66n01a03
Dourado, N., de Moura, M. F. S. F., & de Jesus, A. (2019). Fatigue-fracture characterization of wood under mode I loading. International Journal of Fatigue, 121, 265–271. DOI: https://doi.org/10.1016/j.ijfatigue.2018.12.012
Čufar, K. (2006). Anatomija lesa. Univerzitetni učbenik. Ljubljana: Biotehniška fakulteta, Oddelek za lesarstvo.
Fajdiga, G., Rajh, D., Vidic, D., & Gospodarič, B. (2020). The development of Pneumatic fatigue test rig for wood-based specimens. Forests, 11(11),1187. DOI: https://doi.org/10.3390/f11111187 DOI: https://doi.org/10.3390/f11111187
Glodež, S., & Flašker, J. (2006). Dimenzioniranje na življenjsko dobo. Maribor: Pedagoška fakulteta: Fakulteta za strojništvo.
Gorišek, Ž. (2009). Les: zgradba in lastnosti: njegova variabilnost in heterogenost. Ljubljana: Biotehniška fakulteta, Oddelek za lesarstvo.
Humar, M. (2013). Influence of Norway spruce and European larch heartwood ring-width oextractive content and durability. Drvna Industrija, 64, 2. DOI: https://doi.org/10.5552/drind.2013.1244
Humar, M., Lesar, B., & Kržišnik, D. (2020). Tehnična in estetska življenjska doba lesa. Acta Silvae et Ligni, 121, 33–48. DOI: https://doi.org/10.20315/ASetL.121.3
Ifko, B. (2016). Vpliv staranja na fizikalno-mehanske lastnosti lesa stropne konstrukcije. Diplomsko delo. Ljubljana: Biotehniška fakulteta, Oddelek za lesarstvo
Kaplan, J. O., Krumhardt, K. M., & Zimmermann, N. (2009). The prehistoric and preindustrial deforestation of Europe. Quaternary Science Reviews, 28 (27–28), 3016–3034. DOI: https://doi.org/10.1016/j.quascirev.2009.09.028
Kervina-Hamović, L. (1990). Zaščita lesa. Ljubljana: Biotehniška fakulteta, VTOZD za lesarstvo.
Kitek Kuzman, M., Klarić, S., Pirc Barčić, A., Vlosky, R. P., Janakieska, M. M., & Grošelj, P. (2018). Architect perceptions of engineered wood products: An exploratory study of selected countries in Central and Southeast Europe. Construction and Building Materials, 179, 360–370. DOI: https://doi.org/10.1016/j.conbuildmat.2018.05.164
Lesar, B., Humar, M., & Oven, P. (2008). Dejavniki naravne odpornosti lesa in njegova trajnost. Les, 11/12 (60), 408–414.
Mugerli, M. (2016). Vloga družin Bucelleni in Ruard v gornjesavskem fužinarstvu. Kronika, 463–476.
Sotayo, A., Bradley, D., Bather, M., Sareh, P., Oudjene, M., El-Houjeyri, I., & Guan, Z. (2020). Review of state of the art of dowel laminated timber members and densified wood materials as sustainable engineered wood products for construction and building applications. Developments in the Built Environment, 1, 100004. DOI: https://doi.org/10.1016/j.dibe.2019.100004
Smith, I., Landis, E., & Gong, M. (2003). Fatigue and fracture in Wood. New York: Wiley.
Unger, A., Schniewind, A. P., & Unger, W. (2001). Conservation of wood artifacts : a handbook. Berlin: London: Springer. DOI: https://doi.org/10.1007/978-3-662-06398-9
Wagenführ, R. (2007). Holzatlas. Leipzig: Fachbuchverlag.
Wang, C., Cheng, L.-P., Wang, C., Xiong, Z.-Q., & Wei, S.-M. (2019). Dynamic mechanical characteristics and failure mode of serpentine under a three-dimensional high static load and frequent dynamic disturbance. PLoS ONE, 14 DOI: https://doi.org/10.1371/journal.pone.0222684
Wood, L. (1951). Relation of Strength of Wood to Duration of Laods. Madison: United States Department of Agriculture.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Enej Lipovec Zupanc
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.