Formation and structure of wood and phloem in Norway spruce

Nastajanje in struktura lesa in floema pri navadni smreki


  • Jožica Gričar
  • Katarina Čufar
  • Peter Prislan



earlywood, latewood, early phloem, late phloem, growth ring, cambium, Norway spruce = Picea abies


Wood and phloem formation databases are important for understanding the effects of climate change and extreme weather events on species composition, tree vitality, wood production and wood quality in Slovenian forests. In this paper, we present the latest results on the radial growth of Norway spruce (Picea abies (L.) Karst.) at two sites in Slovenia, Panška reka (PAN – 400 m a. s .l.) and Menina planina (MEN – 1200 m a. s .l.) in 2009–2011. The focus was on the seasonal dynamics of early and latewood, and early and late phloem formation. We found that site conditions greatly affected the seasonal dynamics of wood and phloem formation, which was reflected in the width and structure of annual increments. At the higher elevation MEN site, the growing season was about a month shorter (about 4 months long), which resulted in 39% and 15% narrower wood and phloem increments, respectively. At MEN, the transition from early to latewood was observed on average only a week later than at PAN, while the transition from early to late phloem occurred on average 20 days later at MEN than at PAN. Information on the impact of site conditions on radial growth of spruce and wood quality is important for all stakeholders in the forest-wood value chain, as it can help to take appropriate management measures of adaptation to changing conditions.


Download data is not yet available.


Alfieri, F. J., & Evert, R. F. (1973). Structure and seasonal development of the secondary phloem in the Pinaceae. Botanical Gazette, 134, 17-25. DOI:

Alpert, P., & Simms, E. L. (2002). The relative advantages of plasticity and fixity in different environments: when is it good for a plant to adjust? Evolutionary Ecology, 16, 285-297. DOI:

Čufar, K. (2006). Anatomija lesa. Univerzitetni učbenik. Univerza v Ljubljani, Biotehniška fakulteta, Oddelek za lesarstvo.

Cuny, H. E., Rathgeber, C. B. K., Frank, D., Fonti, P., & Fournier, M. (2014). Kinetics of tracheid development explain conifer tree-ring structure. New Phytol, 203(4), 1231-1241. DOI: DOI:

Cuny, H. E., Rathgeber, C. B. K., Frank, D., Fonti, P., Mäkinen, H., Prislan, P., . . . Fournier, M. (2015). Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nature Plants, 1, 15160. DOI: DOI:

de Groot, M., & Ogris, N. (2019). Short-term forecasting of bark beetle outbreaks on two economically important conifer tree species. Forest Ecology and Management, 450, 117495. DOI: DOI:

Denne, M. P. (1988). Definition of latewood according to Mork (1928). IAWA Bulletin n.s., 10(1), 59-61. DOI:

Dinwoodie, J. M. (1981). Timber, Its Nature and Behaviour. Van Nostrand Reinhold, New York.

Esau, K. (1939). Development and structure of the phloem tissue. The Botanical Review, 5(7), 373-432. DOI: DOI:

Fonti, P., Bryukhanova, M. V., Myglan, V. S., Kirdyanov, A. V., Naumova, O. V., & Vaganov, E. A. (2013). Temperature-induced responses of xylem structure of Larix sibirica (Pinaceae) from the Russian Altay. American Journal of Botany, 100(7), 1332-1343. DOI: DOI:

Gorišek, Ž. (2009). Les : zgradba in lastnosti : njegova variabilnost in heterogenost. Ljubljana, Biotehniška fakulteta, Oddelek za lesarstvo.

Gregory, R. A., & Wilson, B. F. (1968). A comparison of cambial activity of white spruce in Alaska and New England. Canadian Journal of Botany, 46, 733-734. DOI:

Gričar, J. (2017). Kakšne informacije se skrivajo v zgradbi skorje (floema)? Gozdarski vestnik, 75(5-6), 231-245.

Gričar, J., & Čufar, K. (2008). Seasonal dynamics of phloem and xylem formation in silver fir and Norway spruce as affected by drought. Russian Journal of Plant Physiology, 55, 538-543. DOI:

Gričar, J., Čufar, K., Eler, K., Gryc, V., Vavrčík, H., de Luis, M., & Prislan, P. (2021). Transition Dates from Earlywood to Latewood and Early Phloem to Late Phloem in Norway Spruce. Forests, 12(3), 331. Retrieved from DOI:

Gričar, J., Čufar, K., Oven, P., & Schmitt, U. (2005). Differentiation of Terminal Latewood Tracheids in Silver Fir Trees During Autumn. Annals of Botany, 95(6), 959-965. DOI: DOI:

Gričar, J., Krže, L., & Čufar, K. (2009). Relationship among number of cells in xylem, phloem and dormant cambium in silver fir (Abies alba Mill.) trees of different vitality. IAWA Journal, 30(2), 121-133. DOI:

Gričar, J., Lavrič, M., Ferlan, M., Vodnik, D., & Eler, K. (2017). Intra-annual leaf phenology, radial growth and structure of xylem and phloem in different tree parts of Quercus pubescens. European Journal of Forest Research, 136(4), 625-637. DOI: DOI:

Gricar, J., Prislan, P., De Luis, M., Gryc, V., Hacurova, J., Vavrcik, H., & Cufar, K. (2015). Plasticity in variation of xylem and phloem cell characteristics of Norway spruce under different local conditions. Frontiers in Plant Science, 6. DOI: DOI:

Gričar, J., Prislan, P., De Luis, M., Novak, K., Longares, L. A., Martinez del Castillo, E., & Čufar, K. (2016). Lack of annual periodicity in cambial production of phloem in trees from Mediterranean areas. IAWA Journal, 37(2), 332-348. DOI:

Gričar, J., Prislan, P., Gryc, V., Vavrčík, H., de Luis, M., & Čufar, K. (2014). Plastic and locally adapted phenology in cambial seasonality and production of xylem and phloem cells in Picea abies from temperate environments. Tree Physiology, 34(8), 869-881. DOI: DOI:

Gričar, J., Vedenik, A., Skoberne, G., Hafner, P., & Prislan, P. (2020). Timeline of Leaf and Cambial Phenology in Relation to Development of Initial Conduits in Xylem and Phloem in Three Coexisting Sub-Mediterranean Deciduous Tree Species. Forests, 11(10), 1104. Retrieved from DOI:

Gričar, J., Zupančič, M., Čufar, K., Koch, G., Schmitt, U., & Oven, P. (2006). Effect of local heating and cooling on cambial activity and cell differentiation in stem of Norway spruce. Annals of Botany, 97, 943-951. DOI:

Grosser, D., & Teetz, W. (1985). Einheimische Nutzhölzer (Loseblattsammlung). Vorkommen, Baum und Stammform, Holzbeschreibung, Eigenschaften, Verwendung. Central Marketinggesellschaft der deutschen Agrarwirtschaft m.b.H. und Arbeitsgemeinschaft Holz e.V.

Huang, J.-G., Ma, Q., Rossi, S., Biondi, F., Deslauriers, A., Fonti, P., . . . Ziaco, E. (2020). Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proceedings of the National Academy of Sciences, 117(34), 20645-20652. DOI: DOI:

IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Core Writing Team, R. K. Pachauri, & L. A. Meyer (Eds.), (pp. 151). Geneva, Switzerland: IPCC.

Jevšenak, J., Tychkov, I., Gričar, J., Levanič, T., Tumajer, J., Prislan, P., . . . Shishov, V. V. (2021). Growth-limiting factors and climate response variability in Norway spruce (Picea abies L.) along an elevation and precipitation gradients in Slovenia. International Journal of Biometeorology, 65(2), 311-324. DOI: DOI:

Jyske, T., & Hölttä, T. (2015). Comparison of phloem and xylem hydraulic architecture in Picea abies stems. New Phytologist, 205(1), 102-115. DOI: DOI:

Krajnc, L., Hafner, P., & Gričar, J. (2021). The effect of bedrock and species mixture on wood density and radial wood increment in pubescent oak and black pine. Forest Ecology and Management, 481, 118753. DOI: DOI:

Krajnc, L., Hafner, P., Gričar, J., & Simončič, P. (2020). Umerjanje rezistografskih meritev gostote lesa na stoječih drevesih : pretvorba v osnovno gostoto = Calibration of resistograph measurements of wood density in standing trees : conversion into basic density. Gozdarski vestnik : slovenska strokovna revija za gozdarstvo, 78(10), 404-410.

Krajnc, L., Hafner, P., Vedenik, A., Gričar, J., & Simončič, P. (2020). Pregled, izbira in analiza lesnih vrst : Rezultat D1.1.1 (M24) Retrieved from Ljubljana:

Lachaud, S., Catesson, A. M., & Bonnemain, J. L. (1999). Structure and functions of the vascular cambium. C R Acad Sci III, 322(8), 633-650. DOI:

Larson, P. R. (1994). The vascular cambium: development and structure. Berlin-Heidelberg-New York: Springer–Verlag. DOI:

Levanič, T., Gričar, J., Gagen, M., Jalkanen, R., Loader, N., McCarroll, D., . . . Robertson, I. (2009). The climate sensitivity of Norway spruce [Picea abies (L.) Karst.] in the southeastern European Alps. Trees, 23(1), 169-180. DOI: DOI:

Martinez del Castillo, E., Prislan, P., Gričar, J., Gryc, V., Merela, M., Giagli, K., . . . Čufar, K. (2018). Challenges for growth of beech and co-occurring conifers in a changing climate context. Dendrochronologia, 52, 1-10. DOI: DOI:

Novak, K., De Luis, M., Gričar, J., Prislan, P., Merela, M., Smith, K. T., & Čufar, K. (2016). Missing and dark rings associated with drought in Pinus halepensis. IAWA Journal, 37(2), 260-274. DOI: DOI:

Panshin, A. J., & de Zeeuw, C. (1980). Textbook of wood technology (fourth ed.). New York: McGraw-Hill.

Pfautsch, S., Hölttä, T., & Mencuccini, M. (2015). Hydraulic functioning of tree stems—fusing ray anatomy, radial transfer and capacitance. Tree Physiology, 35(7), 706-722. DOI: DOI:

Prislan, P., Gričar, J., Čufar, K., de Luis, M., Merela, M., & Rossi, S. (2019). Growing season and radial growth predicted for Fagus sylvatica under climate change. Climatic Change, 153(1), 181-197. DOI: DOI:

Prislan, P., Gričar, J., de Luis, M., Smith, K. T., & Čufar, K. (2013). Phenological variation in xylem and phloem formation in Fagus sylvatica from two contrasting sites. Agricultural and Forest Meteorology, 180, 142-151. DOI: DOI:

Rossi, S., Anfodillo, T., & Menardi, R. (2006). Trephor: A new tool for sampling microcores from tree stems. IAWA Journal, 27, 89–97. DOI:

Rossi, S., Deslauriers, A., Anfodillo, T., & Carraro, V. (2007). Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia, 152(1), 1-12. DOI: DOI:

Rossi, S., Deslauriers, A., Gričar, J., Seo, J. W., Rathgeber, C. W. G., Anfodillo, T., . . . Jalkanen, R. (2008). Critical temperatures for xylogenesis in conifers of cold climates. Global Ecology and Biogeography, 17(6), 696–707. DOI:

Sass-Klaassen, U., Fonti, P., Cherubini, P., Gričar, J., Robert, E. M. R., Steppe, K., & Bräuning, A. (2016). A Tree-centered approach to assess impacts of extreme climatic events on forests. Frontiers in Plant Science, 7(1069). DOI: DOI:

Skene, D. S. (1972). The kinetics of tracheid development in Tsuga canadensis Carr and its relation to tree vigour. Annals of Botany, 36, 179-187. DOI:

Spicer, R. (2014). Symplasmic networks in secondary vascular tissues: parenchyma distribution and activity supporting long-distance transport. Journal of Experimental Botany, 65(7), 1829-1848. DOI: DOI:

Zavod za gozdove Slovenije. (2020). Poročilo zavoda za gozdove slovenije o gozdovih za leto 2019. Ljubljana: 121 str.






How to Cite

Gričar, J., Čufar, K., & Prislan, P. (2021). Formation and structure of wood and phloem in Norway spruce: Nastajanje in struktura lesa in floema pri navadni smreki. Les/Wood, 70(1), 5-18.

Similar Articles

1-10 of 38

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 4 5 6 > >>