Formation and structure of wood and phloem in Norway spruce

Nastajanje in struktura lesa in floema pri navadni smreki

Authors

  • Jožica Gričar
  • Katarina Čufar
  • Peter Prislan

DOI:

https://doi.org/10.26614/les-wood.2021.v70n01a06

Keywords:

earlywood, latewood, early phloem, late phloem, growth ring, cambium, Norway spruce = Picea abies

Abstract

Wood and phloem formation databases are important for understanding the effects of climate change and extreme weather events on species composition, tree vitality, wood production and wood quality in Slovenian forests. In this paper, we present the latest results on the radial growth of Norway spruce (Picea abies (L.) Karst.) at two sites in Slovenia, Panška reka (PAN – 400 m a. s .l.) and Menina planina (MEN – 1200 m a. s .l.) in 2009–2011. The focus was on the seasonal dynamics of early and latewood, and early and late phloem formation. We found that site conditions greatly affected the seasonal dynamics of wood and phloem formation, which was reflected in the width and structure of annual increments. At the higher elevation MEN site, the growing season was about a month shorter (about 4 months long), which resulted in 39% and 15% narrower wood and phloem increments, respectively. At MEN, the transition from early to latewood was observed on average only a week later than at PAN, while the transition from early to late phloem occurred on average 20 days later at MEN than at PAN. Information on the impact of site conditions on radial growth of spruce and wood quality is important for all stakeholders in the forest-wood value chain, as it can help to take appropriate management measures of adaptation to changing conditions.

Downloads

Download data is not yet available.

References

Alfieri, F. J., & Evert, R. F. (1973). Structure and seasonal development of the secondary phloem in the Pinaceae. Botanical Gazette, 134, 17-25. DOI: https://doi.org/10.1086/336674

Alpert, P., & Simms, E. L. (2002). The relative advantages of plasticity and fixity in different environments: when is it good for a plant to adjust? Evolutionary Ecology, 16, 285-297. DOI: https://doi.org/10.1023/A:1019684612767

Čufar, K. (2006). Anatomija lesa. Univerzitetni učbenik. Univerza v Ljubljani, Biotehniška fakulteta, Oddelek za lesarstvo.

Cuny, H. E., Rathgeber, C. B. K., Frank, D., Fonti, P., & Fournier, M. (2014). Kinetics of tracheid development explain conifer tree-ring structure. New Phytol, 203(4), 1231-1241. DOI: https://doi.org/10.1111/nph.12871 DOI: https://doi.org/10.1111/nph.12871

Cuny, H. E., Rathgeber, C. B. K., Frank, D., Fonti, P., Mäkinen, H., Prislan, P., . . . Fournier, M. (2015). Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nature Plants, 1, 15160. DOI: https://doi.org/10.1038/nplants.2015.160 DOI: https://doi.org/10.1038/nplants.2015.160

de Groot, M., & Ogris, N. (2019). Short-term forecasting of bark beetle outbreaks on two economically important conifer tree species. Forest Ecology and Management, 450, 117495. DOI: https://doi.org/10.1016/j.foreco.2019.117495 DOI: https://doi.org/10.1016/j.foreco.2019.117495

Denne, M. P. (1988). Definition of latewood according to Mork (1928). IAWA Bulletin n.s., 10(1), 59-61. DOI: https://doi.org/10.1163/22941932-90001112

Dinwoodie, J. M. (1981). Timber, Its Nature and Behaviour. Van Nostrand Reinhold, New York.

Esau, K. (1939). Development and structure of the phloem tissue. The Botanical Review, 5(7), 373-432. DOI: https://doi.org/10.1007/BF02878295 DOI: https://doi.org/10.1007/BF02878295

Fonti, P., Bryukhanova, M. V., Myglan, V. S., Kirdyanov, A. V., Naumova, O. V., & Vaganov, E. A. (2013). Temperature-induced responses of xylem structure of Larix sibirica (Pinaceae) from the Russian Altay. American Journal of Botany, 100(7), 1332-1343. DOI: https://doi.org/10.3732/ajb.1200484 DOI: https://doi.org/10.3732/ajb.1200484

Gorišek, Ž. (2009). Les : zgradba in lastnosti : njegova variabilnost in heterogenost. Ljubljana, Biotehniška fakulteta, Oddelek za lesarstvo.

Gregory, R. A., & Wilson, B. F. (1968). A comparison of cambial activity of white spruce in Alaska and New England. Canadian Journal of Botany, 46, 733-734. DOI: https://doi.org/10.1139/b68-100

Gričar, J. (2017). Kakšne informacije se skrivajo v zgradbi skorje (floema)? Gozdarski vestnik, 75(5-6), 231-245.

Gričar, J., & Čufar, K. (2008). Seasonal dynamics of phloem and xylem formation in silver fir and Norway spruce as affected by drought. Russian Journal of Plant Physiology, 55, 538-543. DOI: https://doi.org/10.1134/S102144370804016X

Gričar, J., Čufar, K., Eler, K., Gryc, V., Vavrčík, H., de Luis, M., & Prislan, P. (2021). Transition Dates from Earlywood to Latewood and Early Phloem to Late Phloem in Norway Spruce. Forests, 12(3), 331. Retrieved from https://www.mdpi.com/1999-4907/12/3/331 DOI: https://doi.org/10.3390/f12030331

Gričar, J., Čufar, K., Oven, P., & Schmitt, U. (2005). Differentiation of Terminal Latewood Tracheids in Silver Fir Trees During Autumn. Annals of Botany, 95(6), 959-965. DOI: https://doi.org/10.1093/aob/mci112 DOI: https://doi.org/10.1093/aob/mci112

Gričar, J., Krže, L., & Čufar, K. (2009). Relationship among number of cells in xylem, phloem and dormant cambium in silver fir (Abies alba Mill.) trees of different vitality. IAWA Journal, 30(2), 121-133. DOI: https://doi.org/10.1163/22941932-90000208

Gričar, J., Lavrič, M., Ferlan, M., Vodnik, D., & Eler, K. (2017). Intra-annual leaf phenology, radial growth and structure of xylem and phloem in different tree parts of Quercus pubescens. European Journal of Forest Research, 136(4), 625-637. DOI: https://doi.org/10.1007/s10342-017-1060-5 DOI: https://doi.org/10.1007/s10342-017-1060-5

Gricar, J., Prislan, P., De Luis, M., Gryc, V., Hacurova, J., Vavrcik, H., & Cufar, K. (2015). Plasticity in variation of xylem and phloem cell characteristics of Norway spruce under different local conditions. Frontiers in Plant Science, 6. DOI: https://doi.org/10.3389/fpls.2015.00730 DOI: https://doi.org/10.3389/fpls.2015.00730

Gričar, J., Prislan, P., De Luis, M., Novak, K., Longares, L. A., Martinez del Castillo, E., & Čufar, K. (2016). Lack of annual periodicity in cambial production of phloem in trees from Mediterranean areas. IAWA Journal, 37(2), 332-348. DOI: https://doi.org/10.1163/22941932-20160138

Gričar, J., Prislan, P., Gryc, V., Vavrčík, H., de Luis, M., & Čufar, K. (2014). Plastic and locally adapted phenology in cambial seasonality and production of xylem and phloem cells in Picea abies from temperate environments. Tree Physiology, 34(8), 869-881. DOI: https://doi.org/10.1093/treephys/tpu026 DOI: https://doi.org/10.1093/treephys/tpu026

Gričar, J., Vedenik, A., Skoberne, G., Hafner, P., & Prislan, P. (2020). Timeline of Leaf and Cambial Phenology in Relation to Development of Initial Conduits in Xylem and Phloem in Three Coexisting Sub-Mediterranean Deciduous Tree Species. Forests, 11(10), 1104. Retrieved from https://www.mdpi.com/1999-4907/11/10/1104 DOI: https://doi.org/10.3390/f11101104

Gričar, J., Zupančič, M., Čufar, K., Koch, G., Schmitt, U., & Oven, P. (2006). Effect of local heating and cooling on cambial activity and cell differentiation in stem of Norway spruce. Annals of Botany, 97, 943-951. DOI: https://doi.org/10.1093/aob/mcl050

Grosser, D., & Teetz, W. (1985). Einheimische Nutzhölzer (Loseblattsammlung). Vorkommen, Baum und Stammform, Holzbeschreibung, Eigenschaften, Verwendung. Central Marketinggesellschaft der deutschen Agrarwirtschaft m.b.H. und Arbeitsgemeinschaft Holz e.V.

Huang, J.-G., Ma, Q., Rossi, S., Biondi, F., Deslauriers, A., Fonti, P., . . . Ziaco, E. (2020). Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proceedings of the National Academy of Sciences, 117(34), 20645-20652. DOI: https://doi.org/10.1073/pnas.2007058117 DOI: https://doi.org/10.1073/pnas.2007058117

IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Core Writing Team, R. K. Pachauri, & L. A. Meyer (Eds.), (pp. 151). Geneva, Switzerland: IPCC.

Jevšenak, J., Tychkov, I., Gričar, J., Levanič, T., Tumajer, J., Prislan, P., . . . Shishov, V. V. (2021). Growth-limiting factors and climate response variability in Norway spruce (Picea abies L.) along an elevation and precipitation gradients in Slovenia. International Journal of Biometeorology, 65(2), 311-324. DOI: https://doi.org/10.1007/s00484-020-02033-5 DOI: https://doi.org/10.1007/s00484-020-02033-5

Jyske, T., & Hölttä, T. (2015). Comparison of phloem and xylem hydraulic architecture in Picea abies stems. New Phytologist, 205(1), 102-115. DOI: https://doi.org/10.1111/nph.12973 DOI: https://doi.org/10.1111/nph.12973

Krajnc, L., Hafner, P., & Gričar, J. (2021). The effect of bedrock and species mixture on wood density and radial wood increment in pubescent oak and black pine. Forest Ecology and Management, 481, 118753. DOI: https://doi.org/10.1016/j.foreco.2020.118753 DOI: https://doi.org/10.1016/j.foreco.2020.118753

Krajnc, L., Hafner, P., Gričar, J., & Simončič, P. (2020). Umerjanje rezistografskih meritev gostote lesa na stoječih drevesih : pretvorba v osnovno gostoto = Calibration of resistograph measurements of wood density in standing trees : conversion into basic density. Gozdarski vestnik : slovenska strokovna revija za gozdarstvo, 78(10), 404-410.

Krajnc, L., Hafner, P., Vedenik, A., Gričar, J., & Simončič, P. (2020). Pregled, izbira in analiza lesnih vrst : Rezultat D1.1.1 (M24) Retrieved from Ljubljana: http://dirros.openscience.si/IzpisGradiva.php?id=13882

Lachaud, S., Catesson, A. M., & Bonnemain, J. L. (1999). Structure and functions of the vascular cambium. C R Acad Sci III, 322(8), 633-650. DOI: https://doi.org/10.1016/S0764-4469(99)80103-6

Larson, P. R. (1994). The vascular cambium: development and structure. Berlin-Heidelberg-New York: Springer–Verlag. DOI: https://doi.org/10.1007/978-3-642-78466-8

Levanič, T., Gričar, J., Gagen, M., Jalkanen, R., Loader, N., McCarroll, D., . . . Robertson, I. (2009). The climate sensitivity of Norway spruce [Picea abies (L.) Karst.] in the southeastern European Alps. Trees, 23(1), 169-180. DOI: https://doi.org/10.1007/s00468-008-0265-0 DOI: https://doi.org/10.1007/s00468-008-0265-0

Martinez del Castillo, E., Prislan, P., Gričar, J., Gryc, V., Merela, M., Giagli, K., . . . Čufar, K. (2018). Challenges for growth of beech and co-occurring conifers in a changing climate context. Dendrochronologia, 52, 1-10. DOI: https://doi.org/10.1016/j.dendro.2018.09.001 DOI: https://doi.org/10.1016/j.dendro.2018.09.001

Novak, K., De Luis, M., Gričar, J., Prislan, P., Merela, M., Smith, K. T., & Čufar, K. (2016). Missing and dark rings associated with drought in Pinus halepensis. IAWA Journal, 37(2), 260-274. DOI: https://doi.org/10.1163/22941932-20160133 DOI: https://doi.org/10.1163/22941932-20160133

Panshin, A. J., & de Zeeuw, C. (1980). Textbook of wood technology (fourth ed.). New York: McGraw-Hill.

Pfautsch, S., Hölttä, T., & Mencuccini, M. (2015). Hydraulic functioning of tree stems—fusing ray anatomy, radial transfer and capacitance. Tree Physiology, 35(7), 706-722. DOI: https://doi.org/10.1093/treephys/tpv058 DOI: https://doi.org/10.1093/treephys/tpv058

Prislan, P., Gričar, J., Čufar, K., de Luis, M., Merela, M., & Rossi, S. (2019). Growing season and radial growth predicted for Fagus sylvatica under climate change. Climatic Change, 153(1), 181-197. DOI: https://doi.org/10.1007/s10584-019-02374-0 DOI: https://doi.org/10.1007/s10584-019-02374-0

Prislan, P., Gričar, J., de Luis, M., Smith, K. T., & Čufar, K. (2013). Phenological variation in xylem and phloem formation in Fagus sylvatica from two contrasting sites. Agricultural and Forest Meteorology, 180, 142-151. DOI: https://doi.org/10.1016/j.agrformet.2013.06.001 DOI: https://doi.org/10.1016/j.agrformet.2013.06.001

Rossi, S., Anfodillo, T., & Menardi, R. (2006). Trephor: A new tool for sampling microcores from tree stems. IAWA Journal, 27, 89–97. DOI: https://doi.org/10.1163/22941932-90000139

Rossi, S., Deslauriers, A., Anfodillo, T., & Carraro, V. (2007). Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia, 152(1), 1-12. DOI: https://doi.org/10.1007/s00442-006-0625-7 DOI: https://doi.org/10.1007/s00442-006-0625-7

Rossi, S., Deslauriers, A., Gričar, J., Seo, J. W., Rathgeber, C. W. G., Anfodillo, T., . . . Jalkanen, R. (2008). Critical temperatures for xylogenesis in conifers of cold climates. Global Ecology and Biogeography, 17(6), 696–707. DOI: https://doi.org/10.1111/j.1466-8238.2008.00417.x

Sass-Klaassen, U., Fonti, P., Cherubini, P., Gričar, J., Robert, E. M. R., Steppe, K., & Bräuning, A. (2016). A Tree-centered approach to assess impacts of extreme climatic events on forests. Frontiers in Plant Science, 7(1069). DOI: https://doi.org/10.3389/fpls.2016.01069 DOI: https://doi.org/10.3389/fpls.2016.01069

Skene, D. S. (1972). The kinetics of tracheid development in Tsuga canadensis Carr and its relation to tree vigour. Annals of Botany, 36, 179-187. DOI: https://doi.org/10.1093/oxfordjournals.aob.a084570

Spicer, R. (2014). Symplasmic networks in secondary vascular tissues: parenchyma distribution and activity supporting long-distance transport. Journal of Experimental Botany, 65(7), 1829-1848. DOI: https://doi.org/10.1093/jxb/ert459 DOI: https://doi.org/10.1093/jxb/ert459

Zavod za gozdove Slovenije. (2020). Poročilo zavoda za gozdove slovenije o gozdovih za leto 2019. Ljubljana: 121 str.

Published

21.06.2021

Issue

Section

Articles

How to Cite

Gričar, J., Čufar, K., & Prislan, P. (2021). Formation and structure of wood and phloem in Norway spruce: Nastajanje in struktura lesa in floema pri navadni smreki. Les/Wood, 70(1), 5-18. https://doi.org/10.26614/les-wood.2021.v70n01a06

Similar Articles

1-10 of 38

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 4 5 6 > >>