The influence of spruce wood moisture content on microhardness, determined with indentation
DOI:
https://doi.org/10.26614/les-wood.2023.v72n01a01Keywords:
wood, hardness, wood moisture content, indentation, micromechanical properties, scanning electron microscopeAbstract
Hardness is a measure of the resistance of wood against the penetration of a harder body into its interior and often defines the usefulness of the selected type of wood for a particular purpose. In addition to density, the hardness of individual wood species is highly dependent on the moisture content of the wood. This study determined the hardness of Norway spruce wood conditioned at different relative humidities. Hardness measurements were performed by indenting a ball in radial wood surfaces on an instrument for determining the micromechanical properties of materials. The results showed that the hardness of wood decreases with increasing moisture content; the indentation hardness (HIT) and indentation elastic modulus (EIT) were 110.8±11.7 MPa and 0.62±0.01 GPa for absolutely dry wood, and for wood with a fibre saturation point of 29.4% they were 36.3±7.9 MPa and 0.40±0.05 GPa, respectively. The decrease in hardness of the wood with increasing moisture content was reflected in an increase in the depth of the indentations caused, and an increase in the surface roughness of the samples. Analysis of the wood tissue with a scanning electron microscope showed the flattening of the cell walls of the wood in the areas with indentations, their kneading into tracheid lumina, and the formation of cracks in the cell walls.
Downloads
References
Altgen, M., & Rautkari, L. (2021). Humidity-dependence of the hydroxyl accessibility in Norway spruce wood. Cellulose, 28, 45–58. DOI: https://doi.org/10.1007/s10570-020-03535-6 DOI: https://doi.org/10.1007/s10570-020-03535-6
Borrega, M., & Kärenlampi, P. (2008). Mechanical behavior of heat-treated spruce (Picea abies) wood at constant moisture content and ambient humidity. Holz als Roh- und Werkstoff, 66, 63–69. DOI: https://doi.org/10.1007/s00107-007-0207-3 DOI: https://doi.org/10.1007/s00107-007-0207-3
Broitman, E. (2017). Indentation hardness measurements at macro-, micro-, and nanoscale: A critical overview. Tribology Letters, 65, 23. DOI: https://doi.org/10.1007/s11249-016-0805-5 DOI: https://doi.org/10.1007/s11249-016-0805-5
CEN, E. (2020). Lesene talne obloge in parket - Ugotavljanje odpornosti proti vtiskovanju - Preskusna metoda. Bruselj, Belgija.
De Assis, A., Pinto Alexandre, R., & Wagner Ballarin, A. (2017). Dynamic hardness of wood – measurements with an automated portable hardness tester. Holzforschung, 71(5), 383–389. DOI: https://doi.org/10.1515/hf-2016-0137 DOI: https://doi.org/10.1515/hf-2016-0137
Fu, W.-L., Guan, H.-Y., Li, W., Sawata, K., & Zhao, Y. (2023). Elastoplastic performance of wood under compression load considering cross grain orientation and moisture content. European Journal of Wood and Wood Products, 81, 111–124. DOI: https://doi.org/10.1007/s00107-022-01880-w DOI: https://doi.org/10.1007/s00107-022-01880-w
Gorišek, Ž. (2009). Les: zgradba in lastnosti: njegova variabilnost in heterogenost. Ljubljana: Biotehniška fakulteta, Oddelek za lesarstvo.
Hansson, L., & Antti, A. (2006). The effect of drying method and temperature level on the hardness of wood. Journal of Materials Processing Technology, 171, 467–470. DOI: https://doi.org/10.1016/j.jmatprotec.2005.08.007 DOI: https://doi.org/10.1016/j.jmatprotec.2005.08.007
Koczan, G., Karwat, Z., & Kozakiewicz, P. (2021). An attempt to unify the Brinell, Janka and Monnin hardness of wood on the basis of Meyer law. Journal of Wood Science, 67(7), 16 p. DOI: https://doi.org/10.1186/s10086-020-01938-4 DOI: https://doi.org/10.1186/s10086-020-01938-4
Kretschmann, D. (2010). Mechanical properties of wood. In: R. Ross, Wood handbook - wood as an engineering material (str. 1-46). Madison, ZDA: Forest Products Laboratory.
Lykidis, C., Nikolakakos, M., Sakellariou, E., & Birbilis, D. (2016). Assessment of a modification to the Brinell method for determining solid wood hardness. Materials and Structures, 49, 961–967. DOI: https://doi.org/10.1617/s11527-015-0551-4 DOI: https://doi.org/10.1617/s11527-015-0551-4
Meng, Y., Xia, Y., Young, T., Cai, Z., & Wang, S. (2015). Viscoelasticity of wood cell walls with different moisture content as measured by nanoindentation. RSC Advances, 5, 47538. DOI: https://doi.org/10.1039/c5ra05822h DOI: https://doi.org/10.1039/C5RA05822H
Meyer, L., Brischke, C., & Welzbacher, C. (2011). Dynamic and static hardness of wood: method development and comparative studies. International Wood Products Journal, 2, 5–11. DOI: https://doi.org/10.1179/2042645311Y.0000000005 DOI: https://doi.org/10.1179/2042645311Y.0000000005
Milch, J., Tippner, J., Sebera, V., & Brabec, M. (2016). Determination of the elasto-plastic material characteristics of Norway spruce and European beech wood by experimental and numerical analyses. Holzforschung, 70(11), 1081–1092. DOI: https://doi.org/10.1515/hf-2015-0267 DOI: https://doi.org/10.1515/hf-2015-0267
Oliver, W., & Pharr, G. (1992). An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 7(6), 1564–1583. DOI: https://doi.org/10.1557/JMR.1992.1564 DOI: https://doi.org/10.1557/JMR.1992.1564
Panjan, M., & Čekada, M. (2005a). Merjenje mikrotrdote trdnih PVD-prevlek z nanoindenterjem (1. del) - Fizikalna opredelitev trdote. Vakuumist, 25(3), 9–15.
Panjan, M., & Čekada, M. (2005b). Merjenje mikrotrdote trdnih PVD-prevlek z nanoindenterjem (2. del). Vakuumist, 25(4), 8–17.
Peng, H., Jiang, J., Zhan, T., & Lu, J. (2016). Influence of density and equilibrium moisture content on the hardness anisotropy of wood. Forest Products Journal, 66(7/8), 443–452. DOI: https://doi.org/10.13073/FPJ-D-15-00072 DOI: https://doi.org/10.13073/FPJ-D-15-00072
Petrič, M. (2022). Nova raziskovalna oprema na Oddelku za lesarstvo Biotehniške fakultete Univerze v Ljubljani - Instrument za določanje mikromehanskih lastnosti površin lesa, kompozitov in lesnoobdelovalnih orodij MCT3. Les/Wood, 71(2), 86–87. DOI: https://doi.org/10.26614/les-wood.2022.v71n02a12
Scharf, A., Neyses, B., & Sandberg, D. (2022). Hardness of surface-densified wood. Part 1: material or product property? Holzforschung, 76(6), 503–514. DOI: https://doi.org/10.1515/hf-2021-0151 DOI: https://doi.org/10.1515/hf-2021-0151
Steppe, K., Cnudde, V., Girard, C., Lemeur, R., Cnudde, J.-P., & Jacobs, P. (2004). Use of X-ray computed microtomography for non-invasive determination of wood anatomical characteristics. Journal of Structural Biology, 148, 11–21. DOI: https://doi.org/10.1016/j.jsb.2004.05.001 DOI: https://doi.org/10.1016/j.jsb.2004.05.001
Sydor, M., Pinkowski, G., Kučerka, M., Kminiak, R., Antov, P., & Rogoziński, T. (2022). Indentation hardness and elastic recovery of some hardwood species. Applied Sciences, 12, 5049. DOI: https://doi.org/10.3390/app12105049 DOI: https://doi.org/10.3390/app12105049
Widehammar, S. (2004). Stress-strain relationships for spruce wood: Influence of strain rate, moisture content and loading direction. Expeimental Mechanics, 44(1), 44–48. DOI: https://doi.org/10.1177/0014485104039748 DOI: https://doi.org/10.1007/BF02427975
Zauner, M., Stampanoni, M., & Niemz, P. (2016). Failure and failure mechanisms of wood during longitudinal compression monitored by synchrotron micro-computed tomography. Holzforschung, 70(2), 179–185. DOI: https://doi.org/10.1515/hf-2014-0225 DOI: https://doi.org/10.1515/hf-2014-0225
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Jure Žigon, Aleš Straže
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.