Biocomposite / bionanocomposite films based on polyvinyl alcohol reinforced with cellulose nanofibrils and different types of tannins
DOI:
https://doi.org/10.26614/les-wood.2023.v72n02a06Keywords:
biocomposite and bionanocomposite films, polyvinyl alcohol, cellulose nanofibrils CNF, tannic acid, gallic acid, chestnut tanninAbstract
The aim of our study was to develop biocomposite and bionanocomposite films based on polyvinyl alcohol (PVA) with the addition of a reinforcing component – cellulose nanofibrils (CNF) and different types of biologically active tannins – along with tannic acid (TA), gallic acid (GA) and chestnut tannin (KT). CNF was added in a weight percentage of 2%, while TA, GA and KT had a weight percentage of 4% in relation to PVA. The addition of 4% TA to the PVA matrix resulted in a biocomposite film with more than 25% higher tensile strength compared to the neat PVA film. By adding 2% CNF and 4% TA to the PVA matrix, a bionanocomposite film (P2C4T) with an improved elastic modulus and higher tensile strength was obtained. At the same time, the flexibility of this bionanocomposite was greatly increased, as the elongation at the breaking of the final formulated film (P2C4T) was more than 50% higher than the elongation at break of the neat PVA film. The surface hydrophilicity of the two-component PVA films was lower, while that of the three-component films was higher.
Downloads
References
Abdul Khalil, H. P. S., Davoudpour, Y., Islam, M. N., Mustapha, A., Sudesh, K., Dungani, R., & Jawaid, M. (2014). Production and modification of nanofibrillated cellulose using various mechanical processes: A review. Carbohydrate Polymers, 99, 649–665. DOI: https://doi.org/10.1016/j.carbpol.2013.08.069 DOI: https://doi.org/10.1016/j.carbpol.2013.08.069
Dai, H., Huang, Y., & Huang, H. (2018). Enhanced performances of polyvinyl alcohol films by introducing tannic acid and pineapple peel-derived cellulose nanocrystals. Cellulose, 25, 4623–4637. DOI: https://doi.org/10.1007/s10570-018-1873-5 DOI: https://doi.org/10.1007/s10570-018-1873-5
Dufresne, A. (2013). Nanocellulose: a new ageless bionanomaterial. Materials Today, 16, 220–227. DOI: https://doi.org/10.1016/j.mattod.2013.06.004 DOI: https://doi.org/10.1016/j.mattod.2013.06.004
Espinosa, E., Bascon-Villegas, I., Rosal, A., Perez-Rodriguez, F., Chinga-Carrasco, G., & Rodriguez, A. (2019). PVA/(ligno)nanocellulose biocomposite films. Effect of residual lignin content on structural, mechanical, barrier and antioxidant properties. International Journal of Biological Macromolecules, 141, 197–206. DOI: https://doi.org/10.1016/j.ijbiomac.2019.08.262 DOI: https://doi.org/10.1016/j.ijbiomac.2019.08.262
Guo, J., Suma, T., Richardson, J. J., & Ejima, H. (2019). Modular assembly of biomaterials using polyphenols as building blocks. ACS Biomaterials Science & Engineering, 5, 5578–5596. DOI: https://doi.org/10.1021/acsbiomaterials.8b01507 DOI: https://doi.org/10.1021/acsbiomaterials.8b01507
Han, S., Yao, Q., Jin, C., Fan, B., Zheng, H., & Sun, Q. (2018). Cellulose nanofibers from bamboo and their nanocomposites with polyvinyl alcohol: Preparation and characterization. Polymer Composites, 39, 2611–2619. DOI: https://doi.org/10.1002/pc.24249 DOI: https://doi.org/10.1002/pc.24249
Hong, K. H. (2016). Preparation and properties of polyvinyl alcohol/tannic acid composite film for topical treatment application. Fibers and Polymers, 17, 1963–1968. DOI: https://doi.org/10.1007/s12221-016-6886-9 DOI: https://doi.org/10.1007/s12221-016-6886-9
Isogai, A. (2013). Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. Journal of Wood Science, 59, 449–459. DOI: https://doi.org/10.1007/s10086-013-1365-z DOI: https://doi.org/10.1007/s10086-013-1365-z
Judawisastra, H., Sitohang, R., Marta, L., & Mardiyati, Y. (2017). Water absorption and its effect on the tensile properties of tapioca starch/polyvinyl alcohol bioplastics. IOP Conference Series: Materials Science and Engineering, 223, 012066. DOI: 10.1088/1757-899X/223/1/012066 DOI: https://doi.org/10.1088/1757-899X/223/1/012066
Kassab, Z., Boujemaoui, A., Ben Youcef, H., Hajlane, A., Hannache, H., & El Achaby, M. (2019). Production of cellulose nanofibrils from alfa fibers and its nanoreinforcement potential in polymer nanocomposites. Cellulose, 26, 9567–9581. DOI: https://doi.org/10.1007/s10570-019-02767-5 DOI: https://doi.org/10.1007/s10570-019-02767-5
Lee, H., You, J., Jin, H.J., & Kwak, H.W. (2020). Chemical and physical reinforcement behavior of dialdehyde nanocellulose in PVA composite film: A comparison of nanofiber and nanocrystal. Carbohydrate Polymers, 232, 115771. DOI: https://doi.org/10.1016/j.carbpol.2019.115771 DOI: https://doi.org/10.1016/j.carbpol.2019.115771
Lee, S. Y., Mohan, D.J., Kang, I. A., Doh, G. H., Lee, S., & Han, S. O. (2009). Nanocellulose reinforced PVA composite films: Effects of acid treatment and filler loading. Fibers and Polymers, 10, 77–82. DOI: https://doi.org/10.1007/s12221-009-0077-x DOI: https://doi.org/10.1007/s12221-009-0077-x
Li, Y., Chen, Y., Wu, Q., Huang, J., Zhao, Y., Li, Q., & Wang, S. (2022). Improved hydrophobic, UV barrier and antibacterial properties of multifunctional PVA nanocomposite films reinforced with modified lignin contained cellulose nanofibers. Polymers, 14 (9), 1705. DOI: https://doi.org/10.3390/polym14091705 DOI: https://doi.org/10.3390/polym14091705
Limaye, M. V., Schutz, C., Kriechbaum, K., Wohlert, J., Bacsik, Z., Wohlert, M., & Bergstrom, L. (2019). Functionalization and patterning of nanocellulose films by surface-bound nanoparticles of hydrolyzable tannins and multivalent metal ions. Nanoscale, 11, 19278–19284. DOI: https://doi.org/10.1039/C9NR04142G DOI: https://doi.org/10.1039/C9NR04142G
Liu, B., Zhang, J., & Guo, H. (2022). Research progress of polyvinyl alcohol water-resistant film materials. Membranes, 12 (3), 347. DOI: https://doi.org/10.3390/membranes12030347 DOI: https://doi.org/10.3390/membranes12030347
Luzi, F., Pannucci, E., Santi, L., Kenny, J. M. Torre, L., Bernini, R., & Puglia, D. (2019). Gallic acid and quercetin as intelligent and active ingredients in poly(vinyl alcohol) films for food packaging. Polymers, 11, 1999. DOI: https://doi.org/10.3390/polym11121999 DOI: https://doi.org/10.3390/polym11121999
Mansur, H. S., Sadahira, C. M., Souza, A. N., & Mansur, A. A. P. (2008). FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Materials Science and Engineering, 28, 539–548. DOI: https://doi.org/10.1016/j.msec.2007.10.088 DOI: https://doi.org/10.1016/j.msec.2007.10.088
Missio, A. L., Gatto, D. A., & Tondi, G. (2019). Exploring tannin extracts: Introduction to new bio-based materials. Revista Ciência da Madeira - RCM, 10, 88–102. DOI: https://doi.org/10.12953/2177-6830/rcm.v10n1p88-102 DOI: https://doi.org/10.12953/2177-6830/rcm.v10n1p88-102
Nagalakshmaiah, M., Afrin, S., Maladi, R. P., Elkoun, S., Ansari, M. A., Robert, M., & Karim, Z. (2019). Biocomposites: Present trends and challenges for the future. In: Koronis G., Silva, A. (ed.) Green composites for automotive applications (197–215). DOI: https://doi.org/10.1016/B978-0-08-102177-4.00009-4 DOI: https://doi.org/10.1016/B978-0-08-102177-4.00009-4
Oksman, K., Aitomäki, Y., Mathew, A. P., Siqueira, G., Zhou, Q., Butylina, S., & Hooshmand, S. (2016). Review of the recent developments in cellulose nanocomposite processing. Composites Part A: Applied Science and Manufacturing, 83, 2–18. DOI: https://doi.org/10.1016/j.compositesa.2015.10.041 DOI: https://doi.org/10.1016/j.compositesa.2015.10.041
Papuc, C., Goran, G. V., Predescu, C. N., Nicorescu, V., & Stefan, G. (2017). Plant polyphenols as antioxidant and antibacterial agents for shelf-life extension of meat and meat products: Classification, structures, sources, and action mechanisms. Comprehensive Review of Food Science and Food Safety, 16 (6), 1243–1268. DOI: https://doi.org/10.1111/1541-4337.12298 DOI: https://doi.org/10.1111/1541-4337.12298
Saito, T., Uematsu, T., Kimura, S., Enomae, T., & Isogai, A. (2011). Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter, 7, 8804–8809. DOI: https://doi.org/10.1039/C1SM06050C DOI: https://doi.org/10.1039/c1sm06050c
Sánchez-Gutiérrez, M., Bascón-Villegas, I., Espinosa, E., Carrasco, E., Pérez-Rodríguez, F., & Rodríguez, A. (2021). Cellulose nanofibers from olive tree pruning as food packaging additive of a biodegradable film. Foods, 10 (7), 1584. DOI: https://doi.org/10.3390/foods10071584 DOI: https://doi.org/10.3390/foods10071584
Singh, S., Gaikwad, K. K., & Lee, Y. S. (2018). Antimicrobial and antioxidant properties of polyvinyl alcohol bio composite films containing seaweed extracted cellulose nano-crystal and basil leaves extract. International Journal of Biological Macromolecules, 107, 1879–1887. DOI: https://doi.org/10.1016/j.ijbiomac.2017.10.057 DOI: https://doi.org/10.1016/j.ijbiomac.2017.10.057
Spoljaric, S., Salminen, A., Luong, N. D., & Seppälä, J. (2013). Crosslinked nanofibrillated cellulose: poly(acrylic acid) nanocomposite films; enhanced mechanical performance in aqueous environments. Cellulose, 20, 2991–3005. DOI: https://doi.org/10.1007/s10570-013-0061-x DOI: https://doi.org/10.1007/s10570-013-0061-x
Srithep, Y., Turng, L. S., Sabo, R., & Clemons, C. (2012). Nanofibrillated cellulose (NFC) reinforced polyvinyl alcohol (PVOH) nanocomposites: properties, solubility of carbon dioxide, and foaming. Cellulose, 19, 1209–1223. DOI: https://doi.org/10.1007/s10570-012-9726-0 DOI: https://doi.org/10.1007/s10570-012-9726-0
Tan, R., Li, F., Zhang, Y., Yuan, Z., Feng, X., Zhang, W., & Huang, X. (2021). High-performance biocomposite polyvinyl alcohol (PVA) films modified with cellulose nanocrystals (CNCs), tannic acid (TA), and chitosan (CS) for food packaging. Journal of Nanomaterials, 2021, 4821717. DOI: https://doi.org/10.1155/2021/4821717
Vek, V., Šmidovnik, T., Humar, M., Poljanšek, I., & Oven, P. (2023). Comparison of the content of extractives in the bark of the trunk and the bark of the branches of Silver fir (Abies alba Mill.). Molecules, 28, 225. DOI: https://doi.org/10.3390/molecules28010225 DOI: https://doi.org/10.3390/molecules28010225
Vek, V., Keržič, E., Poljanšek, I., Eklund, P., Humar, M., & Oven, P. (2021). Wood extractives of Silver fir and their antioxidant and antifungal properties. Molecules, 26, 6412. DOI: https://doi.org/10.3390/molecules26216412 DOI: https://doi.org/10.3390/molecules26216412
Žepič, V., Fabjan, E., Počkaj, M., Cerc Korošec, R., Hančič, A., Oven, P., & Poljanšek, I. (2014). Morphological, thermal, and structural aspects of dried and redispersed nanofibrillated cellulose (NFC). Holzforschung, 68, 657–667. DOI: https://doi.org/10.1515/hf-2013-0132 DOI: https://doi.org/10.1515/hf-2013-0132
Zhou, Y.M., Fu, S.Y., Zheng, L.M., & Zhan, H.Y. (2012). Effect of nanocellulose isolation techniques on the formation of reinforced poly(vinyl alcohol) nanocomposite films. Express Polymer Letters, 6, 794–804. DOI: https://doi.org/10.3144/EXPRESSPOLYMLETT.2012.85 DOI: https://doi.org/10.3144/expresspolymlett.2012.85
Zimmermann, T., Pöhler, E., & Geiger, T. (2004). Cellulose fibrils for polymer reinforcement. Advanced Engineering Materials, 6, 754–761. DOI: https://doi.org/10.1002/adem.200400097 DOI: https://doi.org/10.1002/adem.200400097
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Urša Osolnik, Viljem Vek, Primož Oven, Ida Poljanšek
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.