Production of large low-density mycelium composites
DOI:
https://doi.org/10.26614/les-wood.2024.v73n02a01Keywords:
fungi, biocomposites, mycelium materials, myceliumAbstract
As the need for a circular economy grows, so does the need for new sustainable materials. Biocomposites made from fungi are a sustainable alternative to synthetic foams. The key to commercializing this technology is knowing how to produce large quantities of such materials with the appropriate properties. As part of our experimental work, we have produced a larger mycelium biocomposite with a low density, a volume of 47 litres and a length of two metres. The final fungal biocomposite was produced by growing the mycelium in three stages; first in culture bags, then in two larger moulds, which were combined in a third stage. We used a culture of Ganoderma resinaceum and a specially formulated substrate to achieve a low density. The final biocomposite with a density of 80 kg/m³ met the target dimensions, remained infection-free and withstood lighter loads. The main disadvantage of the material was the small surface indentations caused by air inclusions in the substrate when the mycelium-laden substrate was transferred to the moulds.
Downloads
References
Arifin, Y. H., & Yusuf, Y. (2013). Mycelium fibers as new resource for environmental sustainability. Procedia Engineering, 53, 504–508. DOI: https://doi.org/10.1016/j.proeng.2013.02.065
Bonenberg, A., Sydor, M., Cofta, G., Doczekalska, B., & Grygorowicz-Kosakowska, K. (2023). Mycelium-based composite materials: Study of cceptance. Materials, 16, 2164. DOI: https://doi.org/10.3390/ma16062164
Campos-Vega, R., Loarca-Piña, G., Vergara-Castañeda, H. A., & Oomah, B. D. (2015). Spent coffee grounds: A review on current research and future prospects. Trends in Food Science & Technology, 45 (1), 24–36. DOI: https://doi.org/10.1016/j.tifs.2015.04.012
Elsacker, E., Vandelook, S., Van Wylick, A., Ruytinx, J., De Laet, L., & Peeters, E. (2020). A comprehensive framework for the production of mycelium-based lignocellulosic composites. Science of The Total Environment, 725, 138431. DOI: https://doi.org/10.1016/j.scitotenv.2020.138431
Haneef, M., Ceseracciu, L., Canale, C., Bayer, I. S., Heredia-Guerrero, J. A., & Athanassiou, A. (2017). Advanced materials from fungal mycelium: Fabrication and tuning of physical properties. Scientific Reports, 7, 41292. DOI: https://doi.org/10.1038/srep41292
Holt, G. A., Mcintyre, G., Flagg, D., Bayer, E., Wanjura, J. D., & Pelletier, M. G. (2012). Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material: Evaluation study of select blends of cotton byproducts. Journal of Biobased Materials and Bioenergy, 6 (4), 431–439. DOI: https://doi.org/10.1166/jbmb.2012.1241
Huang, Z., Wei, Y., & Hadigheh, S. A. (2024). Variations in the properties of engineered mycelium-bound composites (MBCs) under different manufacturing conditions. Buildings, 14, 155. DOI: https://doi.org/10.3390/buildings14010155
Islam, M. R., Tudryn, G., Bucinell, R., Schadler, L., & Picu, R. C. (2018). Mechanical behavior of mycelium-based particulate composites. Journal of Materials Science, 53, 16371–16382. DOI: https://doi.org/10.1007/s10853-018-2797-z
Islam, M. R., Tudryn, G., Bucinell, R., Schadler, L., & Picu, R. C. (2017). Morphology and mechanics of fungal mycelium. Scientific Reports, 7, 13070. DOI: https://doi.org/10.1038/s41598-017-13295-2
Jones, M., Mautner, A., Luenco, S., Bismarck, A., & John, S. (2020). Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Materials & Design, 187, 108397. DOI: https://doi.org/10.1016/j.matdes.2019.108397
Raspor, P., Smole-Možina, S., Podjavoršek, J., Pohleven, F., Gogala, N., Nekrep, V. F., & Hacin, J. (1995). ZIM: Collection of industrial microorganisms. Catalogue of Cultures (Ljubljana: University of Ljubljana, Biotechnical Faculty).
Ross, P. (2016). Method for producing fungus structures. US9410116B2. URL: https://worldwide.espacenet.com/patent/search/family/046126926/publication/US9410116B2?q=pn%3DUS9410116B2 (20.5.2024)
SIST EN 13183-2 (2003). Delež vlage v žaganem lesu - Ocena z metodo električne upornosti. Slovenski Inštitut za standardizacijo.
Teixeira, J. L., Matos, M. P., Nascimento, B. L., Griza, S., Holanda, F. S. R., & Marino, R. H. (2018). Production and mechanical evaluation of biodegradable composites by white rot fungi. Ciência e Agrotecnologia, 42, 676–684. DOI: https://doi.org/10.1590/1413-70542018426022318
Xing, Y., Brewer, M., El-Gharabawy, H., Griffith, G., & Jones, P. (2018). Growing and testing mycelium bricks as building insulation materials. IOP Conference Series: Earth and Environmental Science, 121, 022032. DOI: https://doi.org/10.1088/1755-1315/121/2/022032
Yang, L., Park, D., & Qin, Z. (2021). Material function of mycelium-based bio-composite: A review. Frontiers in Materials, 8, 737377. DOI: https://doi.org/10.3389/fmats.2021.737377
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Nej Bizjak, Aleš Straže, Davor Kržišnik
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.