Production of large low-density mycelium composites

Authors

  • Nej Bizjak
  • Aleš Straže
  • Davor Kržišnik

DOI:

https://doi.org/10.26614/les-wood.2024.v73n02a01

Keywords:

fungi, biocomposites, mycelium materials, mycelium

Abstract

As the need for a circular economy grows, so does the need for new sustainable materials. Biocomposites made from fungi are a sustainable alternative to synthetic foams. The key to commercializing this technology is knowing how to produce large quantities of such materials with the appropriate properties. As part of our experimental work, we have produced a larger mycelium biocomposite with a low density, a volume of 47 litres and a length of two metres. The final fungal biocomposite was produced by growing the mycelium in three stages; first in culture bags, then in two larger moulds, which were combined in a third stage. We used a culture of Ganoderma resinaceum and a specially formulated substrate to achieve a low density. The final biocomposite with a density of 80 kg/m³ met the target dimensions, remained infection-free and withstood lighter loads. The main disadvantage of the material was the small surface indentations caused by air inclusions in the substrate when the mycelium-laden substrate was transferred to the moulds.

Downloads

Download data is not yet available.

References

Arifin, Y. H., & Yusuf, Y. (2013). Mycelium fibers as new resource for environmental sustainability. Procedia Engineering, 53, 504–508. DOI: https://doi.org/10.1016/j.proeng.2013.02.065

Bonenberg, A., Sydor, M., Cofta, G., Doczekalska, B., & Grygorowicz-Kosakowska, K. (2023). Mycelium-based composite materials: Study of cceptance. Materials, 16, 2164. DOI: https://doi.org/10.3390/ma16062164

Campos-Vega, R., Loarca-Piña, G., Vergara-Castañeda, H. A., & Oomah, B. D. (2015). Spent coffee grounds: A review on current research and future prospects. Trends in Food Science & Technology, 45 (1), 24–36. DOI: https://doi.org/10.1016/j.tifs.2015.04.012

Elsacker, E., Vandelook, S., Van Wylick, A., Ruytinx, J., De Laet, L., & Peeters, E. (2020). A comprehensive framework for the production of mycelium-based lignocellulosic composites. Science of The Total Environment, 725, 138431. DOI: https://doi.org/10.1016/j.scitotenv.2020.138431

Haneef, M., Ceseracciu, L., Canale, C., Bayer, I. S., Heredia-Guerrero, J. A., & Athanassiou, A. (2017). Advanced materials from fungal mycelium: Fabrication and tuning of physical properties. Scientific Reports, 7, 41292. DOI: https://doi.org/10.1038/srep41292

Holt, G. A., Mcintyre, G., Flagg, D., Bayer, E., Wanjura, J. D., & Pelletier, M. G. (2012). Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material: Evaluation study of select blends of cotton byproducts. Journal of Biobased Materials and Bioenergy, 6 (4), 431–439. DOI: https://doi.org/10.1166/jbmb.2012.1241

Huang, Z., Wei, Y., & Hadigheh, S. A. (2024). Variations in the properties of engineered mycelium-bound composites (MBCs) under different manufacturing conditions. Buildings, 14, 155. DOI: https://doi.org/10.3390/buildings14010155

Islam, M. R., Tudryn, G., Bucinell, R., Schadler, L., & Picu, R. C. (2018). Mechanical behavior of mycelium-based particulate composites. Journal of Materials Science, 53, 16371–16382. DOI: https://doi.org/10.1007/s10853-018-2797-z

Islam, M. R., Tudryn, G., Bucinell, R., Schadler, L., & Picu, R. C. (2017). Morphology and mechanics of fungal mycelium. Scientific Reports, 7, 13070. DOI: https://doi.org/10.1038/s41598-017-13295-2

Jones, M., Mautner, A., Luenco, S., Bismarck, A., & John, S. (2020). Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Materials & Design, 187, 108397. DOI: https://doi.org/10.1016/j.matdes.2019.108397

Raspor, P., Smole-Možina, S., Podjavoršek, J., Pohleven, F., Gogala, N., Nekrep, V. F., & Hacin, J. (1995). ZIM: Collection of industrial microorganisms. Catalogue of Cultures (Ljubljana: University of Ljubljana, Biotechnical Faculty).

Ross, P. (2016). Method for producing fungus structures. US9410116B2. URL: https://worldwide.espacenet.com/patent/search/family/046126926/publication/US9410116B2?q=pn%3DUS9410116B2 (20.5.2024)

SIST EN 13183-2 (2003). Delež vlage v žaganem lesu - Ocena z metodo električne upornosti. Slovenski Inštitut za standardizacijo.

Teixeira, J. L., Matos, M. P., Nascimento, B. L., Griza, S., Holanda, F. S. R., & Marino, R. H. (2018). Production and mechanical evaluation of biodegradable composites by white rot fungi. Ciência e Agrotecnologia, 42, 676–684. DOI: https://doi.org/10.1590/1413-70542018426022318

Xing, Y., Brewer, M., El-Gharabawy, H., Griffith, G., & Jones, P. (2018). Growing and testing mycelium bricks as building insulation materials. IOP Conference Series: Earth and Environmental Science, 121, 022032. DOI: https://doi.org/10.1088/1755-1315/121/2/022032

Yang, L., Park, D., & Qin, Z. (2021). Material function of mycelium-based bio-composite: A review. Frontiers in Materials, 8, 737377. DOI: https://doi.org/10.3389/fmats.2021.737377

Published

23.09.2024

Issue

Section

Online First

How to Cite

Bizjak, N., Straže, A., & Kržišnik, D. . (2024). Production of large low-density mycelium composites. Les/Wood, 73(2), 5-12. https://doi.org/10.26614/les-wood.2024.v73n02a01

Most read articles by the same author(s)

1 2 > >>