Influence of plasma surface treatment on bonding of beech wood with polyurethane adhesive

Authors

  • Martin Capuder
  • Neja Bizjak Štrus
  • Sebastian Dahle
  • Bogdan Šega
  • Milan Šernek

DOI:

https://doi.org/10.26614/les-wood.2024.v73n02a04

Keywords:

structural bonding, wood, European beech = Fagus sylvatica, red heart, plasma surface treatment, polyurethane adhesive

Abstract

The study investigated the effects of plasma surface treatment on bonding beech wood with structural one-component polyurethane adhesive. The wood used included European beech (Fagus sylvatica L.) without discolouration and red-heart beech, and the efficiency of the adhesive joints was evaluated by testing shear strength and delamination according to the SIST EN 14080:2013 standard. The results showed that plasma treatment improved the wettability of the surface but did not contribute to enhancing the quality of the adhesive joints. In the case of red-heart beech, a higher degree of wood failure was observed, while the shear strengths of the adhesive joints were lower. Using polyurethane adhesive for bonding beech wood did not meet the standard requirements for adhesive joint delamination. The study did not show significant differences in bonding between beech wood without discolouration and red-heart beech.

Downloads

Download data is not yet available.

References

Aicher, S., & Reinhardt, H. W. (2006). Delaminierungseigenschaften und Scherfestigkeiten von verklebten rotkernigen Buchenholzlamellen. Holz als Roh- und Werkstoff, 65(2), 125–136. DOI: https://doi.org/10.1007/s00107-006-0114-7

Aicher, S., & Ohnesorge, D. (2011). Shear strength of glued laminated timber made from European beech timber. European Journal of Wood and Wood Products, 69(1), Article 1. DOI: https://doi.org/10.1007/s00107-009-0399-9

Acda, M. N., Devera, E. E., Cabangon, R. J., & Ramos, H. J. (2012). Effects of plasma modification on adhesion properties of wood. International Journal of Adhesion and Adhesives, 32, 70–75. DOI: https://doi.org/10.1016/j.ijadhadh.2011.10.003

Ammann, S. D. (2015). Mechanical performance of glue joints in structural hardwood elements (p. 1 Band) [ETH Zurich; Application/pdf]. DOI: https://doi.org/10.3929/ETHZ-A-010575524

Avramidis, G., Hauswald, E., Lyapin, A., Militz, H., Viöl, W., & Wolkenhauer, A. (2009). Plasma treatment of wood and wood-based materials to generate hydrophilic or hydrophobic surface characteristics. Wood Material Science and Engineering, 4(1–2), 52–60. DOI: https://doi.org/10.1080/17480270903281642

Bamokina Moanda, D., Lehmann, M., & Niemz, P. (2022). Investigation of the impact of micro-structuring on the bonding performance of beechwood (Fagus sylvatica L.). Forests, 13(1), 113. DOI: https://doi.org/10.3390/f13010113

Nečasová, B., Liška, P., Kelar, J., & Šlanhof J. (2019). Comparison of adhesive properties of polyurethane adhesive system and wood-plastic composites with different polymers after mechanical, chemical and physical surface treatment. Polymers, 11(3), 397. DOI: https://doi.org/10.3390/polym11030397

Blanchard, V., Blanchet, P., & Riedl, B. (2009). Surface energy modification by radiofrequency inductive and capacitive plasmas at low pressures on sugar maple: An exploratory study. Wood and Fiber Science, 41.

Cvelbar, U. (2007). Osnove fizike kisikove plazme. Vakuumist, 1/2, 24–33. URL: https://www.dlib.si/details/URN:NBN:SI:doc-2L3S7ZLD

Čufar, K., Gorišek, Ž., Merela, M., Kropivšek, J., Gornik Bučar, D., & Straže, A. (2017). Lastnosti bukovine in njena raba - Properties of beechwood and its use. Les/Wood, 66(1), 27–39. DOI: https://doi.org/10.26614/les-wood.2017.v66n01a03

Fašalek, A. (2019). Optimizacija sestave hibridnih lepljenih lameliranih nosilcev [Magistrsko delo, A. Fašalek]. Repozitorij Univerze v Ljubljani. URL: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=slv&id=113416 (15.10.2024)

Fridman, A. (2008). Plasma chemistry. Cambridge University Press. DOI: https://doi.org/10.1017/cbo9780511546075

Fu, W.-L., Guan, H.-Y., & Kei, S. (2021). Effects of moisture content and grain direction on the elastic properties of beech wood based on experiment and finite element method. Forests, 12(5), 610. DOI: https://doi.org/10.3390/f12050610

Gardner, D. J., Generalla, N. C., Gunnells, D. W., & Wolcott, M. P. (1991). Dynamic wettability of wood. Langmuir, 7(11), 2498–2502. DOI: https://doi.org/10.1021/la00059a017

Gurnett, D. A., & Bhattacharjee, A. (2005). Introduction to Plasma Physics: With Space and Laboratory Applications. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511809125

Hänsel, A., Tröger, J., Rößler, M., Brachhold, N., & Niemz, P. (2023). Influence of surface treatment on the bonding quality of wood for load-bearing purposes. Wood Material Science & Engineering, 18(6), 2128–2139. DOI: https://doi.org/10.1080/17480272.2023.2269138

Kim, H.-H. (2004). Nonthermal plasma processing for air-pollution control: a historical review, current issues, and future prospects. Plasma Processes and Polymers, 1(2), 91–110. DOI: https://doi.org/10.1002/ppap.200400028

Kläusler, O., Hass, P., Amen, C., Schlegel, S., & Niemz, P. (2014). Improvement of tensile shear strength and wood failure percentage of 1C PUR bonded wooden joints at wet stage by means of DMF priming. European Journal of Wood and Wood Products, 72(3), 343–354. DOI: https://doi.org/10.1007/s00107-014-0786-8

Klébert, S., Mohai, M., & Csiszár, E. (2022). Can plasma surface treatment replace traditional wood modification methods? Coatings, 12(4), 487. DOI: https://doi.org/10.3390/coatings12040487

Kogelschatz, U. (2003). Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chemistry and Plasma Processing, 23, 1–46. DOI: https://doi.org/10.1023/A:1022470901385

Král, P., Ráhel’, J., Stupavská, M., Šrajer, J., Klímek, P., Mishra, P. K., & Wimmer, R. (2015). XPS depth profile of plasma-activated surface of beech wood (Fagus sylvatica) and its impact on polyvinyl acetate tensile shear bond strength. Wood Science and Technology, 49(2), 319–330. DOI: https://doi.org/10.1007/s00226-014-0691-7

Letno poročilo Zavoda za gozdove. Zavod za gozdove Slovenije. URL: http://www.zgs.si/zavod/publikacije/letna_porocila/index.html. Dostopano (12. 9. 2024)

Luedtke, J., Amen, C., Van Ofen, A., & Lehringer, C. (2015). 1C-PUR-bonded hardwoods for engineered wood products: Influence of selected processing parameters. European Journal of Wood and Wood Products, 73(2), 167–178. DOI: https://doi.org/10.1007/s00107-014-0875-8

Ohnesorge, D., Richter, K., & Becker, G. (2010). Influence of wood properties and bonding parameters on bond durability of European Beech (Fagus sylvatica L.) glulams. Annals of Forest Science, 67(6), 601. DOI: https://doi.org/10.1051/forest/2010014

Pecman, K. (2016). Lepljen lameliran les iz bukovine: diplomsko delo - visokošolski strokovni študij [Diplomsko delo, K. Pecman]. Repozitorij Univerze v Ljubljani. URL: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=slv&id=158794 (15.10.2024)

Penkov, O. V., Khadem, M., Lim, W.-S., & Kim, D.-E. (2015). A review of recent applications of atmospheric pressure plasma jets for materials processing. Journal of Coatings Technology and Research, 12(2), 225–235. DOI: https://doi.org/10.1007/s11998-014-9638-z

Rushanovich Safin, R., Khasanshin, R., Galyavetdinov, N., Salimgaraeva, R., Mukhametzyanov, S., Safina, A., & Kraysman, N. (2021). Improving the physical and mechanical performance of laminated wooden structures by low-temperature plasma treatment. Polymers, 13(2), 252. DOI: https://doi.org/10.3390/polym13020252

Samani, R., & Molaei, H. (2019). Enhancement of bonding performance of wood surface using atmospheric pressure plasma treatment. Surface and Coatings Technology, 361, 25–35. DOI: https://doi.org/10.1016/j.surfcoat.2018.11.026

Sarrazin, B., & Verchère, A. (2007). Advanced technology for surface treatment of wood. Composites Part A: Applied Science and Manufacturing, 38(5), 1130–1137. DOI: https://doi.org/10.1016/j.compositesa.2006.05.007

Schmidt, M., Glos, P., & Wegener, G. (2010). Verklebung von Buchenholz für tragende Holzbauteile. European Journal of Wood and Wood Products, 68(1), 43–57. DOI: https://doi.org/10.1007/s00107-009-0387-1

Schmidt, M., Thönnißen, A., Knorz, M., Windeisen, E., & Wegener, G. (2012). Relevant wood characteristics for gluing beech and ash with regard to discoloration. European Journal of Wood and Wood Products, 70: 319–325

Shi, S. Q., & Gardner, D. J. (2001). Dynamic adhesive wettability of wood. Wood and Fiber Science, 33(1), 58–68. URL: https://www.researchgate.net/publication/265550144

SIST EN 14080:2013. Lesene konstrukcije – Lepljeni lamelirani les in lepljeni masivni les.

Škerjanc, M., & Omerzel, D. (2015). Determining the effect of plasma treatment on wood surface characteristics and their influence on adhesive bonding. Wood Research, 60(4), 635–646.

Stecher, S. J., & Heyne, S. (2021). Influence of atmospheric pressure plasma on wood wettability and bonding quality. European Journal of Wood and Wood Products, 79(4), 977–985. DOI: https://doi.org/10.1007/s00107-021-01762-5

Torelli, N. (2001). Odziv drevja na globoke in površinske poškodbe na primeru bukve (Fagus sylvatica L.) s poudarkom na nastanku in ekologiji ranitvenega lesa ("rdeče srce") (pregled). Gozdarski vestnik 59, 2: 85–95.

Tulliani, J.-M., & Malucelli, G. (2009). The effects of the micro-structure of wood on bonding performance. Wood and Fiber Science, 41(3), 293–303.

Uradni list Republike Slovenije (2017). Uredba o zelenem javnem naročanju. Uradni list Republike Slovenije, št. 51/17. URL: https://pisrs.si/pregledPredpisa?id=URED7202 (21.10.2024)

Varga, M., & Török, M. (2022). Effect of atmospheric pressure plasma treatment on the adhesive bonding of wood and wood-based materials. International Journal of Adhesion and Adhesives, 114, 102531. DOI: https://doi.org/10.1016/j.ijadhadh.2022.102531

Vilar, E., & Guedes, J. P. (2019). Effects of low-temperature plasma treatment on the wettability of wood surfaces. Applied Sciences, 9(1), 114. DOI: https://doi.org/10.3390/app9010114

Wöhler, M., & Möhring, J. (2019). Ageing of atmospheric pressure plasma treated wood surfaces: Impact on adhesion performance. International Journal of Adhesion and Adhesives, 95, 102391. DOI: https://doi.org/10.1016/j.ijadhadh.2019.102391

Ziegler, A., Omerzel, D., & Koller, M. (2021). Investigating the effects of atmospheric pressure plasma treatment on wood surface energy and adhesive bonding performance. Journal of Adhesion Science and Technology, 35(16), 1745–1764. DOI: https://doi.org/10.1080/01694243.2020.1800546

Žigon, J. (2021a). Interactions of a waterborne coating with plasma pre-treated densified beech wood. European Journal of Wood and Wood Products, 79, 1383–1394. DOI: https://doi.org/10.1007/s00107-021-01716-z

Žigon, J., Saražin, J., Šernek, M., Kovač, J., & Dahle, S. (2021b). The effect of ageing on bonding performance of plasma treated beech wood with urea-formaldehyde adhesive. Cellulose, 28, 2461–2478. DOI: https://doi.org/10.1007/s10570-021-03687-z

Žigon, J., Petrič, M., & Dahle, S. (2018). Dielectric barrier discharge (DBD) plasma pretreatment of lignocellulosic materials in air at atmospheric pressure for their improved wettability: a literature review. Holzforschung, 72(11), 979–991. DOI: https://doi.org/10.1515/hf-2017-0207

Published

22.11.2024

Issue

Section

Articles

How to Cite

Capuder, M., Bizjak Štrus, N., Dahle, S., Šega, B., & Šernek, M. (2024). Influence of plasma surface treatment on bonding of beech wood with polyurethane adhesive. Les/Wood, 73(2), 35-48. https://doi.org/10.26614/les-wood.2024.v73n02a04

Most read articles by the same author(s)

1 2 > >>