Assessing climate-growth relationships with daily and monthly observational and gridded meteorological data

Authors

  • Nina Škrk Dolar
  • Katarina Čufar
  • Jernej Jevšenak

DOI:

https://doi.org/10.26614/les-wood.2024.v73n02a06

Keywords:

observational data, gridded data, tree rings, correlation analysis, dendroclimatology

Abstract

We compared climate-growth relationships by correlating tree-ring variation with daily and monthly meteorological data obtained from the stations of the Slovenian Environment Agency (ARSO) and modelled data from the SLOCLIM database. Tree-ring width series for analyses were obtained from previously collected European beech (Fagus sylvatica) tree-ring data from 30 sites all over Slovenia. Climate-growth correlations were calculated to evaluate whether daily meteorological data exhibits stronger correlations than monthly data. We also compared the maximum correlation coefficients using meteorological station data and gridded SLOCLIM data. The analysis was conducted using the dendroTools R package, incorporating data on daily and monthly average air temperatures and precipitation sums from the period 1960–2018. Our findings revealed significantly higher maximum correlation coefficients for daily data compared to monthly data, underscoring the importance of using daily data, particularly for precipitation. However, no significant difference was observed between maximum correlation coefficients using the meteorological station and modelled data, and the difference did not change significantly with increasing altitude.

Downloads

Download data is not yet available.

References

Beck, W., Sanders, T. G. M., & Pofahl, U. (2013). CLIMTREG: detecting temporal changes in climate–growth reactions–a computer program using intra-annual daily and yearly moving time intervals of variable width. Dendrochronologia, 31(3), 232–241.

Castagneri, D., Petit, G., & Carrer, M. (2015). Divergent climate response on hydraulic-related xylem anatomical traits of Picea abies along a 900-m altitudinal gradient. Tree Physiology, 35(12), 1378–1387. DOI: https://doi.org/10.1093/treephys/tpv085

Chaney, N. W., Sheffield, J., Villarini, G., & Wood, E. F. (2014). Development of a high-resolution gridded daily meteorological dataset over sub-Saharan Africa: Spatial analysis of trends in climate extremes. Journal of Climate, 27(15), 5815–5835. DOI: https://doi.org/10.1175/JCLI-D-13-00423.1

Cook, E. R., & Kairiukstis, L. A. (2013). Methods of dendrochronology: applications in the environmental sciences. Springer Science & Business Media.

Copernicus Climate Change Service, C. D. S. (2023). ERA5 hourly data on single levels from 1940 to present. URL: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview (28.11.2024)

Čufar, K., De Luis, M., Horvat, E., & Prislan, P. (2008a). Main patterns of variability in beech tree-ring chronologies from different sites in Slovenia and their relation to climate. Zbornik Gozdarstva in Lesarstva, 87, 123–134.

Čufar, K., Prislan, P., & Gričar, J. (2008b). Cambial activity and wood formation in beech (Fagus sylvatica) during the 2006 growth season. Wood Research, 53, 1–11.

Dolar, N. Š., Castillo, E. M. del, Serrano-Notivoli, R., Arrillaga, M. de L., Novak, K., Merela, M., & Čufar, K. (2023). Spatial and temporal variation of Fagus sylvatica growth in marginal areas under progressive climate change. Dendrochronologia, 81. DOI: https://doi.org/10.1016/j.dendro.2023.126135

Fritts, H. (1976). Tree rings and climate. Academic Press.

Geijer, H., Ndongozi, F., & Edvardsson, J. (2024). Dendrochronology with a medical X-ray photon counting computed tomography scanner. Dendrochronologia, 86, 126233. DOI: https://doi.org/10.1016/j.dendro.2024.126233

Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P. D., & New, M. (2008). A European daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006. Journal of Geophysical Research Atmospheres, 113(20). DOI: https://doi.org/10.1029/2008JD010201

Jevšenak, J. (2019). Daily climate data reveal stronger climate-growth relationships for an extended European tree-ring network. Quaternary Science Reviews, 221. DOI: https://doi.org/10.1016/j.quascirev.2019.105868

Jevšenak, J., & Levanič, T. (2018). DendroTools: R package for studying linear and nonlinear responses between tree-rings and daily environmental data. Dendrochronologia, 48, 32–39. DOI: https://doi.org/10.1016/j.dendro.2018.01.005

Kaczka, R. J., Janecka, K., Hulist, A., & Spyt, B. (2017). Linking the growth/climate response of daily resolution with annual ring formation of Norway spruce in the Tatra Mountains. Trace, 15, 13–22.

Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4(1), 1–20.

Liang, W., Heinrich, I., Simard, S., Helle, G., Liñán, I. D., & Heinken, T. (2013). Climate signals derived from cell anatomy of scots pine in NE Germany. Tree Physiology, 33(8), 833–844. DOI: https://doi.org/10.1093/treephys/tpt059

Lussana, C., Tveito, O. E., & Uboldi, F. (2018). Three-dimensional spatial interpolation of 2 m temperature over Norway. Quarterly Journal of the Royal Meteorological Society, 144(711), 344–364. DOI: https://doi.org/10.1002/qj.3208

Nadbath, M. (2015). Podnebna spremenljivost Slovenije v obdobju 1961-2011. Meteorološka opazovanja I. Ministrstvo za okolje in prostor, Agencija RS za okolje.

Nagavciuc, V., Roibu, C. C., Ionita, M., Mursa, A., Cotos, M. G., & Popa, I. (2019). Different climate response of three tree ring proxies of Pinus sylvestris from the Eastern Carpathians, Romania. Dendrochronologia, 54(October 2018), 56–63. DOI: https://doi.org/10.1016/j.dendro.2019.02.007

Popa, A., Jevšenak, J., Popa, I., Badea, O., & Buras, A. (2024). In pursuit of change: Divergent temporal shifts in climate sensitivity of Norway spruce along an elevational and continentality gradient in the Carpathians. Agricultural and Forest Meteorology, 358(July). DOI: https://doi.org/10.1016/j.agrformet.2024.110243

Prislan, P., Gričar, J., Čufar, K., de Luis, M., Merela, M., & Rossi, S. (2019). Growing season and radial growth predicted for Fagus sylvatica under climate change. Climatic Change, 153(1–2), 181–197. DOI: https://doi.org/10.1007/s10584-019-02374-0

Prislan, P., Gričar, J., de Luis, M., Smith, K. T., & Čufar, K. (2013). Phenological variation in xylem and phloem formation in Fagus sylvatica from two contrasting sites. Agricultural and Forest Meteorology, 180, 142–151. DOI: https://doi.org/10.1016/j.agrformet.2013.06.001

Pritzkow, C., Heinrich, I., Grudd, H., & Helle, G. (2014). Relationship between wood anatomy, tree-ring widths and wood density of Pinus sylvestris L. and climate at high latitudes in northern Sweden. Dendrochronologia, 32(4), 295–302. DOI: https://doi.org/10.1016/j.dendro.2014.07.003

Rohde, R., & Hausfather, Z. (2019). Berkeley Earth Combined Land and Ocean Temperature Field, Jan 1850-Nov 2019 [Data set]. Zenodo. DOI: https://doi.org/https://doi.org/10.5281/zenodo.3634713

Serrano-Notivoli, R., Beguería, S., & de Luis, M. (2019). STEAD: A high-resolution daily gridded temperature dataset for Spain. Earth System Science Data Discussions, 1–27. DOI: https://doi.org/10.5194/essd-2019-52

Serrano-Notivoli, R., Beguería, S., Saz, M. Á., Longares, L. A., & de Luis, M. (2017). SPREAD: A high-resolution daily gridded precipitation dataset for Spain. Earth System Science Data Discussions, 1–33. DOI: https://doi.org/10.5194/essd-2017-35

Škrk, N., Serrano-Notivoli, R., Čufar, K., Merela, M., Črepinšek, Z., Kajfež Bogataj, L., & de Luis, M. (2021). SLOCLIM: a high-resolution daily gridded precipitation and temperature dataset for Slovenia. Earth System Science Data, 13(7), 3577–3592. DOI: https://doi.org/10.5194/essd-13-3577-2021

Skudnik, M., Grah, A., Guček, M., Hladnik, D., Jevšenak, J., Kovač, M., Kušar, G., Mali, B., Pintar, A. M., Pisek, R., Planinšek, Š., Poljanec, A., & Simončič, P. (2021). Stanje in spremembe slovenskih gozdov med letoma 2000 in 2018 : rezultati velikoprostorskega monitoringa gozdov in gozdnih ekosistemov. Gozdarski inštitut Slovenije, Silva Slovenica. DOI: https://doi.org/10.20315/SFS.181

Speer, J. H. (2010). Fundamentals of Tree-Ring Research. University of Arizona Press.

Wilcoxon, F. (1992). Individual comparisons by ranking methods. In Breakthroughs in statistics: Methodology and distribution (pp. 196–202). Springer.

Downloads

Published

04.12.2024

Issue

Section

Articles

How to Cite

Škrk Dolar, N., Čufar, K., & Jevšenak, J. (2024). Assessing climate-growth relationships with daily and monthly observational and gridded meteorological data. Les/Wood, 73(2), 63-74. https://doi.org/10.26614/les-wood.2024.v73n02a06

Most read articles by the same author(s)

1 2 3 4 5 6 > >>