Assessing climate-growth relationships with daily and monthly observational and gridded meteorological data
DOI:
https://doi.org/10.26614/les-wood.2024.v73n02a06Keywords:
observational data, gridded data, tree rings, correlation analysis, dendroclimatologyAbstract
We compared climate-growth relationships by correlating tree-ring variation with daily and monthly meteorological data obtained from the stations of the Slovenian Environment Agency (ARSO) and modelled data from the SLOCLIM database. Tree-ring width series for analyses were obtained from previously collected European beech (Fagus sylvatica) tree-ring data from 30 sites all over Slovenia. Climate-growth correlations were calculated to evaluate whether daily meteorological data exhibits stronger correlations than monthly data. We also compared the maximum correlation coefficients using meteorological station data and gridded SLOCLIM data. The analysis was conducted using the dendroTools R package, incorporating data on daily and monthly average air temperatures and precipitation sums from the period 1960–2018. Our findings revealed significantly higher maximum correlation coefficients for daily data compared to monthly data, underscoring the importance of using daily data, particularly for precipitation. However, no significant difference was observed between maximum correlation coefficients using the meteorological station and modelled data, and the difference did not change significantly with increasing altitude.
Downloads
References
Beck, W., Sanders, T. G. M., & Pofahl, U. (2013). CLIMTREG: detecting temporal changes in climate–growth reactions–a computer program using intra-annual daily and yearly moving time intervals of variable width. Dendrochronologia, 31(3), 232–241.
Castagneri, D., Petit, G., & Carrer, M. (2015). Divergent climate response on hydraulic-related xylem anatomical traits of Picea abies along a 900-m altitudinal gradient. Tree Physiology, 35(12), 1378–1387. DOI: https://doi.org/10.1093/treephys/tpv085
Chaney, N. W., Sheffield, J., Villarini, G., & Wood, E. F. (2014). Development of a high-resolution gridded daily meteorological dataset over sub-Saharan Africa: Spatial analysis of trends in climate extremes. Journal of Climate, 27(15), 5815–5835. DOI: https://doi.org/10.1175/JCLI-D-13-00423.1
Cook, E. R., & Kairiukstis, L. A. (2013). Methods of dendrochronology: applications in the environmental sciences. Springer Science & Business Media.
Copernicus Climate Change Service, C. D. S. (2023). ERA5 hourly data on single levels from 1940 to present. URL: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview (28.11.2024)
Čufar, K., De Luis, M., Horvat, E., & Prislan, P. (2008a). Main patterns of variability in beech tree-ring chronologies from different sites in Slovenia and their relation to climate. Zbornik Gozdarstva in Lesarstva, 87, 123–134.
Čufar, K., Prislan, P., & Gričar, J. (2008b). Cambial activity and wood formation in beech (Fagus sylvatica) during the 2006 growth season. Wood Research, 53, 1–11.
Dolar, N. Š., Castillo, E. M. del, Serrano-Notivoli, R., Arrillaga, M. de L., Novak, K., Merela, M., & Čufar, K. (2023). Spatial and temporal variation of Fagus sylvatica growth in marginal areas under progressive climate change. Dendrochronologia, 81. DOI: https://doi.org/10.1016/j.dendro.2023.126135
Fritts, H. (1976). Tree rings and climate. Academic Press.
Geijer, H., Ndongozi, F., & Edvardsson, J. (2024). Dendrochronology with a medical X-ray photon counting computed tomography scanner. Dendrochronologia, 86, 126233. DOI: https://doi.org/10.1016/j.dendro.2024.126233
Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P. D., & New, M. (2008). A European daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006. Journal of Geophysical Research Atmospheres, 113(20). DOI: https://doi.org/10.1029/2008JD010201
Jevšenak, J. (2019). Daily climate data reveal stronger climate-growth relationships for an extended European tree-ring network. Quaternary Science Reviews, 221. DOI: https://doi.org/10.1016/j.quascirev.2019.105868
Jevšenak, J., & Levanič, T. (2018). DendroTools: R package for studying linear and nonlinear responses between tree-rings and daily environmental data. Dendrochronologia, 48, 32–39. DOI: https://doi.org/10.1016/j.dendro.2018.01.005
Kaczka, R. J., Janecka, K., Hulist, A., & Spyt, B. (2017). Linking the growth/climate response of daily resolution with annual ring formation of Norway spruce in the Tatra Mountains. Trace, 15, 13–22.
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4(1), 1–20.
Liang, W., Heinrich, I., Simard, S., Helle, G., Liñán, I. D., & Heinken, T. (2013). Climate signals derived from cell anatomy of scots pine in NE Germany. Tree Physiology, 33(8), 833–844. DOI: https://doi.org/10.1093/treephys/tpt059
Lussana, C., Tveito, O. E., & Uboldi, F. (2018). Three-dimensional spatial interpolation of 2 m temperature over Norway. Quarterly Journal of the Royal Meteorological Society, 144(711), 344–364. DOI: https://doi.org/10.1002/qj.3208
Nadbath, M. (2015). Podnebna spremenljivost Slovenije v obdobju 1961-2011. Meteorološka opazovanja I. Ministrstvo za okolje in prostor, Agencija RS za okolje.
Nagavciuc, V., Roibu, C. C., Ionita, M., Mursa, A., Cotos, M. G., & Popa, I. (2019). Different climate response of three tree ring proxies of Pinus sylvestris from the Eastern Carpathians, Romania. Dendrochronologia, 54(October 2018), 56–63. DOI: https://doi.org/10.1016/j.dendro.2019.02.007
Popa, A., Jevšenak, J., Popa, I., Badea, O., & Buras, A. (2024). In pursuit of change: Divergent temporal shifts in climate sensitivity of Norway spruce along an elevational and continentality gradient in the Carpathians. Agricultural and Forest Meteorology, 358(July). DOI: https://doi.org/10.1016/j.agrformet.2024.110243
Prislan, P., Gričar, J., Čufar, K., de Luis, M., Merela, M., & Rossi, S. (2019). Growing season and radial growth predicted for Fagus sylvatica under climate change. Climatic Change, 153(1–2), 181–197. DOI: https://doi.org/10.1007/s10584-019-02374-0
Prislan, P., Gričar, J., de Luis, M., Smith, K. T., & Čufar, K. (2013). Phenological variation in xylem and phloem formation in Fagus sylvatica from two contrasting sites. Agricultural and Forest Meteorology, 180, 142–151. DOI: https://doi.org/10.1016/j.agrformet.2013.06.001
Pritzkow, C., Heinrich, I., Grudd, H., & Helle, G. (2014). Relationship between wood anatomy, tree-ring widths and wood density of Pinus sylvestris L. and climate at high latitudes in northern Sweden. Dendrochronologia, 32(4), 295–302. DOI: https://doi.org/10.1016/j.dendro.2014.07.003
Rohde, R., & Hausfather, Z. (2019). Berkeley Earth Combined Land and Ocean Temperature Field, Jan 1850-Nov 2019 [Data set]. Zenodo. DOI: https://doi.org/https://doi.org/10.5281/zenodo.3634713
Serrano-Notivoli, R., Beguería, S., & de Luis, M. (2019). STEAD: A high-resolution daily gridded temperature dataset for Spain. Earth System Science Data Discussions, 1–27. DOI: https://doi.org/10.5194/essd-2019-52
Serrano-Notivoli, R., Beguería, S., Saz, M. Á., Longares, L. A., & de Luis, M. (2017). SPREAD: A high-resolution daily gridded precipitation dataset for Spain. Earth System Science Data Discussions, 1–33. DOI: https://doi.org/10.5194/essd-2017-35
Škrk, N., Serrano-Notivoli, R., Čufar, K., Merela, M., Črepinšek, Z., Kajfež Bogataj, L., & de Luis, M. (2021). SLOCLIM: a high-resolution daily gridded precipitation and temperature dataset for Slovenia. Earth System Science Data, 13(7), 3577–3592. DOI: https://doi.org/10.5194/essd-13-3577-2021
Skudnik, M., Grah, A., Guček, M., Hladnik, D., Jevšenak, J., Kovač, M., Kušar, G., Mali, B., Pintar, A. M., Pisek, R., Planinšek, Š., Poljanec, A., & Simončič, P. (2021). Stanje in spremembe slovenskih gozdov med letoma 2000 in 2018 : rezultati velikoprostorskega monitoringa gozdov in gozdnih ekosistemov. Gozdarski inštitut Slovenije, Silva Slovenica. DOI: https://doi.org/10.20315/SFS.181
Speer, J. H. (2010). Fundamentals of Tree-Ring Research. University of Arizona Press.
Wilcoxon, F. (1992). Individual comparisons by ranking methods. In Breakthroughs in statistics: Methodology and distribution (pp. 196–202). Springer.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Nina Škrk Dolar, Katarina Čufar, Jernej Jevšenak
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.