Effects of thermal modification on the water resistance and colour stability of wood species from Bosnia and Herzegovina
DOI:
https://doi.org/10.26614/les-wood.2025.v74n01a02Keywords:
thermal modification, sorption, water resistance, colour change, indigenous wood speciesAbstract
This study investigates the impact of thermal modification on the water resistance and colour stability of Indigenous wood species from Bosnia and Herzegovina, including Norway spruce (Picea abies), silver fir (Abies alba), oak (Quercus sp.), and walnut (Juglans regia). Thermal modification, conducted in the presence of air, enhanced the hydrophobicity of all tested wood species by reducing their water absorption and limiting their susceptibility to moisture-driven dimensional changes. The modification process also induced notable colour changes, darkening each species in line with the degradation of lignin and other wood constituents. The degree of colour change was observed to increase with higher treatment temperatures, particularly at 210 °C, as measured by the CIE Lab colour system. These findings suggest that thermal modification provides an environmentally friendly method to improve both durability and aesthetic appeal in wood, extending the material’s application range for humid or outdoor environments.
Metrics
Downloads
References
Alrubaie, M. A. A., Lopez-Anido, R. A., Gardner, D. J., Tajvidi, M., & Han, Y. (2019). Experimental investigation of the hygrothermal creep strain of wood–plastic composite lumber made from thermally modified wood. Journal of Thermoplastic Composite Materials, 33 (9), 1248–1268. DOI: https://doi.org/10.1177/0892705718820398
Brischke, C., & Rapp, A. O. (2008). Influence of wood moisture content and wood temperature on fungal decay in the field: Observations in different micro-climates. Wood Science and Technology, 42(8), 663–677. DOI: https://doi.org/10.1007/s00226-008-0190-9
CEN. (1994). ENV 1250-2: Testing of waterborne wood preservatives – Part 2: Determination of the leaching of active ingredients. European Committee for Standardization (CEN), Brussels.
Dong, H., Hasanagić, R., Fathi, L., Bahmani, M., Kržišnik, D., Keržič, E., & Humar, M. (2023). Selected mechanical and physical properties of thermally modified wood after field exposure tests. Forests, 14 (5), 1006. DOI: https://doi.org/10.3390/f14051006
Chu, D., Hasanagić, R., Fathi, L., Bahmani, M., & Humar, M. (2023). Water absorption capacity and coating adhesion on thermally modified and not-modified spruce wood (blue stained or free of blue stained). Journal of Renewable Materials, 11 (12), 4061-4078. DOI: https://doi.org/10.32604/jrm.2023.043657
Hasanagić, R., Šljivo, U., Fathi, L., Gutam, P., Bahmani, M., & Humar, M. (2024). Evaluation of mechanical properties and surface quality of wood from Bosnia and Herzegovina exposed to outdoor conditions. Journal of Renewable Materials, 12 (8), 1417–1431. DOI: https://doi.org/10.32604/jrm.2024.052826
Hill, C., Altgen, M., & Rautkari, L. (2021). Thermal modification of wood—a review: chemical changes and hygroscopicity. Journal of Materials Science, 56 (11), 6581–6614. DOI: https://doi.org/10.1007/s10853-020-05722-z
Humar, M., Lesar, B., & Kržišnik, D. (2020). Technical and aesthetic service life of wood. Acta Silvae et Ligni, 121, 33–48. DOI: https://doi.org/10.20315/asetl.121.3
Humar, M., Lesar, B., & Kržišnik, D. (2021). Vpliv podnebnih sprememb na dinamiko glivnega razkroja lesa v Sloveniji. Acta Silvae et Ligni, 125, 53–59. DOI: https://doi.org/10.20315/asetl.125.5
Esteves, B. (2009). Wood modification by heat treatment. BioResources, 4, 370–404.
Garcia, R. A., de Carvalho, A. M., de Figueiredo Latorraca, J. V., de Matos, J. L. M., Santos, W. A., & de Medeiros Silva, R. F. (2010). Nondestructive evaluation of heat-treated Eucalyptus grandis Hill ex Maiden wood using stress wave method. Wood Science and Technology, 46 (1), 41–52. DOI: https://doi.org/10.1007/s00226-010-0387-6
Gunduz, G., Korkut, S., Aydemir, D., & Bekar, I. (2009). The density, compression strength and surface hardness of heat treated hornbeam (Carpinus Betulus L.) wood. Maderas. Ciencia y Tecnología, 11 (1). DOI: https://doi.org/10.4067/S0718-221X2009000100005
Hanewinkel, M., Cullmann, D. A., Schelhaas, M.-J., Nabuurs, G.-J., & Zimmermann, N. E. (2012). Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change, 3 (3), 203–207. DOI: https://doi.org/10.1038/nclimate1687
Isaksson, T., Brischke, C., & Thelandersson, S. (2012). Development of decay performance models for outdoor timber structures. Materials and Structures, 46 (8), 1209–1225. DOI: https://doi.org/10.1617/s11527-012-9965-4
Kocaefe, D., Poncsak, S., & Boluk, Y. (2008). Effect of thermal treatment on the chemical composition and mechanical properties of birch and Aspen. Journal of Wood Chemistry and Technology, 28 (3), 517–537.
Kutnik, M., Suttie, E., & Brischke, C. (2014). European standards on durability and performance of wood and wood-based products – Trends and challenges. Wood Material Science & Engineering, 9 (2), 122–133. DOI: https://doi.org/10.1080/17480272.2014.894574
Lähtinen, K., Harju, C., & Toppinen, A. (2019). Consumers’ perceptions on the properties of wood affecting their willingness to live in and prejudices against houses made of timber. Wood Material Science and Engineering, 14(5), 325–331. DOI: https://doi.org/10.1080/17480272.2019.1615548
Meyer-Veltrup, L., Brischke, C., Alfredsen, G., Humar, M., Flæte, P. O., Isaksson, T., Brelid, P. L., Westin, M., & Jermer, J. (2017). The combined effect of wetting ability and durability on outdoor performance of wood: development and verification of a new prediction approach. Wood Science and Technology, 51(3), 615–637. DOI: https://doi.org/10.1007/s00226-017-0893-x
Mantanis, G. I. (2017). Modeling approach on the correction model of the chromatic aberration of scanned wood grain images. Coatings, 12 (79). DOI: https://doi.org/10.15376/biores.12.2.mantanis
Mao, J., Wu, Z., Feng, X. A. (2022). Chemical modification of wood by acetylation or furfurylation. A review of the present scaled-up technologies. BioResources, 12 (2).
Nasir, V., Nourian, S., Avramidis, S., & Cool, J. (2018). Prediction of physical and mechanical properties of thermally modified wood based on color change evaluated by means of 'Group Method of Data Handling' (GMDH) neural network. Holzforschung, 73 (4), 381–392. DOI: https://doi.org/10.1515/hf-2018-0146
Reinprecht, L. (2016). Wood Deterioration, Protection and Maintenance. John Wiley & Sons.
Rep, G., Pohleven, F., & Kosmerl, S. (2012). Development of the industrial kiln for thermal wood modification by a procedure with an initial vacuum and commercialization of modified Silvapro wood. In M. H. and M. P. D. Jones, H. Militz, M. Petrič, F. Pohleven (Ed.), Proceedings of the 6th European Conference on Wood Modification (pp. 11–17). University of Ljubljana.
Repič, R. (2018). Alternative methods for quality assessment of thermally modified wood : M. Sc. thesis. University of Ljubljana, Biotechnical Faculty.
Rowell, R. M. (2021). Understanding wood surface chemistry and approaches to modification: A review. Polymers, 13 (8), 2558. DOI: https://doi.org/10.3390/polym13152558
Sandberg, D., Kutnar, A., Karlsson, O., & Jones, D. (2021). Wood Modification Technologies. Principles, Sustainability, and the Need for Innovation. CRC Press: Cambridge, UK. ISBN 9781138491779.
Spear, M. J., Curling, S. F., Dimitriou, A., & Ormondroyd, G. A. (2021). Review of functional treatments for modified wood. Coatings, 11 (3), 327. DOI: https://doi.org/10.3390/coatings11030327
Teng, T.-J., Mat Arip, M. N., Sudesh, K., Nemoikina, A., Jalaludin, Z., Ng, E.-P., & Lee, H.-L. (2018). Conventional technology and nanotechnology in wood preservation. BioResources, 13 (4), 9229–9252. DOI: https://doi.org/10.15376/biores.13.4.teng
Van den Bulcke, J., De Windt, I., Defoirdt, N., De Smet, J., & Van Acker, J. (2011). Moisture dynamics and fungal susceptibility of plywood. International Biodeterioration & Biodegradation, 65 (7), 708–716.
Žlahtič, M., & Humar, M. (2016). Influence of artificial and natural weathering on the hydrophobicity and surface properties of wood. BioResources, 11(2), 4964–4989. DOI: https://doi.org/10.15376/biores.11.2.4964-4989
Žlahtič-Zupanc, M., Lesar, B., & Humar, M. (2018). Changes in moisture performance of wood after weathering. Construction and Building Materials, 193, 529–538. DOI: https://doi.org/10.1016/j.conbuildmat.2018.10.196
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Redžo Hasanagić, Selma Mujanić, Mohsen Bahmani, Miha Humar

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.





