EFFECT OF ASSEMBLÉ-STEP ON KINETIC AND KINEMATIC PARAMETERS OF STAG RING LEAPS WITH AND WITHOUT THROW-CATCH OF THE BALL IN RHYTHMIC GYMNASTICS

Authors

  • Hounaida Akkari-Ghazouani Tunisian Research Laboratory “Sport Performance Optimization”, National Centre of Medicine and Science in Sport, Tunisia; High Institute of Sport and Physical Education of Ksar Said, Manouba University, Tunisia
  • Samiha Amara Tunisian Research Laboratory “Sport Performance Optimization”, National Centre of Medicine and Science in Sport, Tunisia; Department of Physical Education and Sport Sciences, College of Education, Sultan Qaboos University, Sultanate of Oman;
  • Monem Jemni Hartpury University, UK
  • Mokhtar Chtara Tunisian Research Laboratory “Sport Performance Optimization”, National Centre of Medicine and Science in Sport, Tunisia; High Institute of Sport and Physical Education of Ksar Said, Manouba University, Tunisia
  • Bessem Mkaouer High Institute of Sport and Physical Education of Ksar Said, Manouba University, Tunisia

DOI:

https://doi.org/10.52165/sgj.14.3.299-310

Keywords:

Leap, Run-up, Apparatus

Abstract

This study was conducted to compare the kinetic and kinematic factors of stag ring leap with and without throwing the ball using the two-leg take-off ballet-step “Assemblé” between three different modes in rhythmic gymnastics (RG). Seven members of the Tunisian RG national team (age 18.71±2.69 years; height 1.67±0.04 m; weight 58.43±4.03 kg) took part in this study. A kinetic and kinematic analysis of three stag ring leap execution modes (i.e., assemblé stag ring leap without ball, throw ball assemblé stag ring leap and assemblé throw ball stag ring leap) using two cameras on a specially designed floor carpet where a force plate was integrated was conducted. The result showed that the vertical component of force, the rate of force development, the angle of split legs and the horizontal and vertical velocity were significantly different (P<0.01). In this study, it was found that while performing the stag ring leap element, gymnasts present the highest value in both kinetic and kinematic parameters when throwing the ball during the jump (i.e., assemblé throw ball stag ring leap).  In light of the obtained results, it is recommended that coaches start working with gymnasts on the throws during the jump from their youngest age, as this could help them attain the optimal performances in competition.

Downloads

Download data is not yet available.

References

Abd El-Hamid, R. (2010). Directing some biomechanical indicators using some qualitative exercises to improve leap skill. World Journal of Sport Sciences 3(S), 381- 386.

ABT. (2006). Ballet Dictionary. American Ballet Theatre Retrieved from https://www.abt.org/explore/learn/ballet-dictionary/

Akkari-Ghazouani, H., Mkaouer, B., Amara, S., & Chtara, M. (2020). Kinetic and kinematic analysis of three different execution modes of stag leap with and without throw-catch ball in rhythmic gymnastics. Science of Gymnastics Journal, 12(3), 255-434. DOI: https://doi.org/10.52165/sgj.12.3.255-264

Ashby, B. M., & Heegaard, J. H. (2002). Role of arm motion in the standing long jump. Journal of biomechanics, 35(12), 1631-1637. doi:10.1016/S0021-9290(02)00239-7 DOI: https://doi.org/10.1016/S0021-9290(02)00239-7

Batista Santos, A., Lemos, M. E., Lebre, E., & Ávila Carvalho, L. (2015). Active and passive lower limb flexibility in high level rhythmic gymnastics. Science of Gymnastics Journal, 7(2), 55-66.

Bobo-Arce, M., & Méndez Rial, B. (2013). Determinants of competitive performance in rhythmic gymnastics: a review. Journal of Human Sport & Exercise, 8(2), 711-727. doi:10.4100/jhse.2013.8.Proc3.18 DOI: https://doi.org/10.4100/jhse.2013.8.Proc3.18

Brønd, J. C., & Elbæk, L. (2013). Problem based learning and the use of digital tools, for improving use and understanding of biomechanics in practical sports subjects. Paper presented at the The 2nd NORDPLUS-IDROTT Conference, Odense, Region of Southern Denmark. https://www.sdu.dk/-/media/sidste_chance/files/om_sdu/institutter/iob/forskningsnetvaerk/nordplus2013/abstractbook.pdf

Bubanj, S., Stanković, R., Bubanj, R., Dimić, A., Bednarik, J., & Kolar, E. (2010). One leg vs two-legs vertical jumping performance. Facta universitatis-series: Physical Education and Sport, 8(1), 89-95.

Carlson, R. V., Boyd, K. M., & Webb, D. J. (2004). The revision of the Declaration of Helsinki: past, present and future. British journal of clinical pharmacology, 57(6), 695-713. doi:10.1111/j.1365-2125.2004.02103.x DOI: https://doi.org/10.1111/j.1365-2125.2004.02103.x

Chiat, L. F., & Ying, L. F. (2012). Importance of music learning and musicality in rhythmic gymnastics. Procedia-Social and Behavioral Sciences, 46, 3202-3208. doi:10.1016/j.sbspro.2012.06.037 DOI: https://doi.org/10.1016/j.sbspro.2012.06.037

Coppola, S., Albano, D., Sivoccia, I., & Vastola, R. (2020). Biomechanical analysis of a rhythmic gymnastics jump performed using two run-up techniques. Journal of Physical Education & Sport, 20(1), 37-42. doi:10.7752/jpes.2020.01005

De Leva, P. (1996). Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters. Journal of biomechanics, 29(9), 1223-1230. doi:10.1016/0021-9290(95)00178-6 DOI: https://doi.org/10.1016/0021-9290(95)00178-6

dos Reis Furtado, L. N., de Toledo, E., Antualpa, K. F., & Carbinatto, M. V. (2020). Ballet movements in rhythmic gymnastics routines: an analisys from the last two code of points (2013-2016 and 2017-2020). Science of Gymnastics Journal, 12(3), 395-439.

Douda, H. T., Tokmakidis, S., & Tsigilis, N. (2002). Effects of specific training on muscle strength and flexibility of rhythmic sports and artistic female gymnasts. Coaching and Sport Science Journal, 4, 23-27.

Douda, H. T., Toubekis, A. G., Avloniti, A. A., & Tokmakidis, S. P. (2008). Physiological and anthropometric determinants of rhythmic gymnastics performance. International Journal of Sports Physiology and Performance, 3(1), 41-54. doi:10.1123/ijspp.3.1.41 DOI: https://doi.org/10.1123/ijspp.3.1.41

Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behavior research methods, 41(4), 1149-1160. doi:10.3758/BRM.41.4.1149 DOI: https://doi.org/10.3758/BRM.41.4.1149

FIG. (2020). Code Of Point Rhythmic Gymnastics (Vol. 2017-2020). Lausanne Suissland: Fédération Internationale de Gymnastique.

Haguenauer, M., Legreneur, P., & Monteil, K. M. (2005). Vertical jumping reorganization with aging: a kinematic comparison between young and elderly men. Journal of Applied Biomechanics, 21(3), 236-246. DOI: https://doi.org/10.1123/jab.21.3.236

Hanavan, J., & Ernest, P. (1964). A mathematical model of the human body. Ohio, USA: Air Force Aerospace Medical Research Lab Wright-Patterson, AFB Ohio, USA.

Hopkins, W. G. (2002). A scale of magnitudes for effect statistics. A new view of statistics. Sportscience, 502, 411.

Hutchinson, M. R., Tremain, L., Christiansen, J., & Beitzel, J. (1998). Improving leaping ability in elite rhythmic gymnasts. Medicine and Science in Sports and Exercise, 30(10), 1543-1547. doi:10.1097/00005768-199810000-00012 DOI: https://doi.org/10.1097/00005768-199810000-00012

Kums, T., Ereline, J., Gapeyeva, H., & Paasuke, M. (2005). Vertical jumping performance in young rhythmic gymnasts. Biology of sport, 22(3), 237.

Mkaouer, B., Amara, S., & Tabka, Z. (2012). Split leap with and without ball performance factors in rhythmic gymnastic. Science of Gymnastics Journal, 4(2), 75-81.

Mkaouer, B., Jemni, M., Amara, S., Chaabène, H., Padulo, J., & Tabka, Z. (2014). Effect of three technical arms swings on the elevation of the center of mass during a standing back somersault. J Hum Kinet, 40, 37-48. doi:10.2478/hukin-2014-0005 DOI: https://doi.org/10.2478/hukin-2014-0005

Nabanete dos Reis Furtado, L., de Toledo, E., Fernandes Antualpa, K., & Carbinatto, M. V. (2020). Ballet Movements in Rhythmic Gymnastics Routines: An Analisys From the Last Two Code of Points (2013-2016 and 2017-2020). Science of Gymnastics Journal, 12(3), 395 - 406. DOI: https://doi.org/10.52165/sgj.12.3.395-406

Nelson, J., Johnson, B., & Smith, G. (1983). Physical characteristics, hip flexibility and arm strength of female gymnasts classified by intensity of training across age. The Journal of Sports Medicine and Physical Fitness, 23(1), 95-101.

Polat, S. Ç. (2018). The Effect of Two Different Take Offs on Split Leap and Stag Leap with Ring Parameters in Rhythmic Gymnastics. Pedagogical Research, 3(4), 13. doi:10.20897/pr/3905 DOI: https://doi.org/10.20897/pr/3905

Purenović, T., Bubanj, S., Popović, R., Stanković, R., & Bubanj, R. (2010). Comparative kinematics analysis of different split front leaps. Sport Science, 3(1), 13-20.

Putra, R. B. A., Soenyoto, T., Darmawan, A., & Irsyada, R. (2020). Basic Movements of The Split Leap Rhythmic Gymnastics. Paper presented at the 5th International Seminar of Public Health and Education, ISPHE 2020, Semarang, Indonesia. DOI: https://doi.org/10.4108/eai.22-7-2020.2300304

Ratamess, N. (2021). ACSM's foundations of strength training and conditioning: Lippincott Williams & Wilkins.

Sekuli, Cacute, D., & Wolf-Cvitak, J. (2004). The leaping performance of 7-year-old novice rhythmic gymnasts is highly influenced by the condition of their motor abilities. Kinesiology, 36(1), 35-42.

Selecká, L., Krnáčová, A., & Lamošová, A. (2020). Biomechanical characteristics of stag leap with back bend of the trunk: A case study. Science of Gymnastics Journal, 12(3), 243-433. DOI: https://doi.org/10.52165/sgj.12.3.243-253

Sousa, F., & Lebre, E. (1996). Biomechanical analysis of two different jumps in rhythmic sports gymnastic (RSG). Paper presented at the ISBS-Conference Proceedings Archive.

Sousa, F., & Lebre, E. (1998). Biomechanics of jumps in rhythmic sport gymnastics (RSG) kinematic analysis of the principal jumps in RSG. Paper presented at the ISBS-Conference Proceedings Archive.

Stone, M. H., Stone, M., & Sands, W. A. (2007). Principles and practice of resistance training: Human Kinetics. DOI: https://doi.org/10.5040/9781492596875

Vaverka, F., Jandačka, D., Zahradník, D., Uchytil, J., Farana, R., Supej, M., & Vodičar, J. (2016). Effect of an arm swing on countermovement vertical jump performance in elite volleyball players. J Hum Kinet, 53(1), 41-50. doi:10.1515/hukin-2016-0009 DOI: https://doi.org/10.1515/hukin-2016-0009

Vescovi, J. (2008). Plyometric, speed, and agility exercise prescription. In T. Chandler & L. Brown (Eds.), Conditioning for strength and human performance (pp. 306-345). Baltimore: Lippincott Williams & Wilkins.

Zar, J. (1984). Multiple comparisons. Biostatistical analysis, 1, 185-205.

Zatsiorsky, V. (2008). Biomechanics in sport: performance enhancement and injury prevention (Vol. 9): John Wiley & Sons.

Downloads

Published

2022-10-28

Issue

Section

Articles

How to Cite

Akkari-Ghazouani, H., Amara, S., Jemni, M., Chtara, M., & Mkaouer, B. (2022). EFFECT OF ASSEMBLÉ-STEP ON KINETIC AND KINEMATIC PARAMETERS OF STAG RING LEAPS WITH AND WITHOUT THROW-CATCH OF THE BALL IN RHYTHMIC GYMNASTICS. Science of Gymnastics Journal, 14(3), 299-310. https://doi.org/10.52165/sgj.14.3.299-310

Similar Articles

1-10 of 36

You may also start an advanced similarity search for this article.