JUMP PERFORMANCE IN TRAMPOLINE ATHLETES AND HOW TO MEASURE IT: DEVELOPING A REPEATED JUMP TEST

Authors

  • Yannick Prosch Department of Movement Science and Training in Sports, Institute of Sport Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
  • Dr. Marie-Therese Fleddermann Department of Movement Science and Training in Sports, Institute of Sport Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
  • Lukas Reichert Department of Movement Science and Training in Sports, Institute of Sport Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
  • Prof. Dr. Karen Zentgraf Department of Movement Science and Training in Sports, Institute of Sport Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany

DOI:

https://doi.org/10.52165/sgj.16.3.447-460

Keywords:

performance analysis, elite athletes, performance decrement, athletic performance

Abstract

A competitive trampoline routine consists of ten scored jumps on which trampoline gymnasts need to exhibit an adequate strength endurance performance of their lower extremities. These strength endurance requirements are assessed with “Repeated Jump Tests” (RJT). However, existing tests are not designed for trampolining, but rather for game sports. Such tests aim, for example, at different number of repetitions and for minimizing ground contact time, thus lacking the specific repetitions and intensity of a trampoline routine. Therefore, the aim of this study is to develop a RJT specifically for trampolining that will assess jump height, performance decrement (PD) during RJT, and jump-to-jump fluctuations. Twenty-nine elite trampoline gymnasts (TR) from the junior national squad (JNS-TR; n = 21) and the senior national squad (SNS-TR; n = 8), 21 athletes from jump-intensive game sports (GS; comprising volleyball n = 15; handball n = 6), and 16 PE students (PE) completed the RJT consisting of twelve repeated jumps. Group differences were analyzed by ANOVA and trampoline squad differences via t-tests. Results showed that TR had a lower PD compared to GS and PE (p < .05). SNS-TR trampoline gymnasts show lower jump-to-jump fluctuations than JNS-TR trampoline gymnasts (p < .05). TR exhibited a superior performance in the RJT regarding PD compared to GS and PE. In conclusion, our RJT is proposed as a new tool for validly measuring repeated jump performance in trampoline gymnasts.

Downloads

Download data is not yet available.

References

Batista, A., Lebre, E., & Avila-Carvalho, L. (2016). Explosive power of lower limbs in rhythmic gymnastics athletes in different competitive levels. Revista Brasileira de Educação Física e Esporte, 30, 41–50. https://doi.org/10.1590/1807-55092016000100041

Billaut, F., Bishop, D. J., Schaerz, S., & Noakes, T. D. (2011). Influence of knowledge of sprint number on pacing during repeated-sprint exercise. Medicine & Science in Sports & Exercise, 43(4), 665–672. https://doi.org/10.1249/MSS.0b013e3181f6ee3b

Borràs, X., Balius, X., Drobnic, F., & Galilea, P. (2011). Vertical jump assessment on volleyball: A follow-up of three seasons of a high-level volleyball team. The Journal of Strength & Conditioning Research, 25(6), 1686–1694. https://doi.org/10.1519/JSC.0b013e3181db9f2e

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Routledge. https://doi.org/10.4324/9780203771587

Deutscher Olympischer Sportbund (2022). Bestandserhebung 2022: Fassung vom 01.10.2022; Stichtag der Erfassung: 1. Januar 2022 (1st Digital edition). Deutscher Olympischer Sportbund. https://cdn.dosb.de/user_upload/www.dosb.de/uber_uns/Bestandserhebung/BE-Heft_2022.pdf

Di Mascio, M., Ade, J., & Bradley, P. S. (2015). The reliability, validity and sensitivity of a novel soccer-specific reactive repeated-sprint test (RRST). European Journal of Applied Physiology, 115(12), 2531–2542. https://doi.org/10.1007/s00421-015-3247-0

Dyas, N., Green, D., Thomas, K., & Howatson, G. (2021). Reliability and characterisation of the 20-maximum trampoline jump test. Isokinetics and Exercise Science, 29(2), 131–137. https://doi.org/ 10.3233/IES-203179

Fédération Internationale De Gymnastique (2015). FIG apparatus norms. http://www.fedecolgim.co/reglamentos/Normas%20de%20los%20aparatos%20FIG%202015.pdf

Ferger, K., Helm, F., & Zentgraf, K. (2020). Estimating horizontal displacement deduction in trampoline gymnastics by means of constant and variable errors of landing position: A new gold standard? Science of Gymnastics Journal, 12, 203–216. https://doi.org/10.52165/sgj.12.2.203-216

Flood, M. W., & Grimm, B. (2021). EntropyHub: An open-source toolkit for entropic time series analysis. PloS One, 16(11), e0259448. https://doi.org/10.1371/journal.pone.0259448

Girard, O., Mendez-Villanueva, A., & Bishop, D. J. (2011). Repeated-sprint ability part I: Factors contributing to fatigue. Sports Medicine, 41(8), 673–694. https://doi.org/10.2165/11590550-000000000-00000

Glaister, M., Howatson, G., Pattison, J. R., & McInnes, G. (2008). The reliability and validity of fatigue measures during multiple-sprint work: An issue revisited. The Journal of Strength & Conditioning Research, 22(5), 1597–1601. https://doi.org/10.1519/JSC.0b013e318181ab80

Glatthorn, J. F., Gouge, S., Nussbaumer, S., Stauffacher, S., Impellizzeri, F. M., & Maffiuletti, N. A. (2011). Validity and reliability of optojump photoelectric cells for estimating vertical jump height. The Journal of Strength & Conditioning Research, 25(2), 556–560. https://doi.org/10.1519/JSC.0b013e3181ccb18d

Harper, D., Hobbs, S. & Moore, J. (2011). The 10 to 5 repeated jump test. A new test for evaluating reactive strength. [Paper Presentation]. BASES Student Conference 2011, Chester, UK.

Heinen, T., & Krepela, F. (2016). Evaluating routines in trampoline gymnastics. Science of Gymnastics Journal, 8(3), 229–238.

Hermassi, S., Chelly, M. S., Wagner, H., Fieseler, G., Schulze, S., Delank, K.-S., Shephard, R. J., & Schwesig, R. (2019). Relationships between maximal strength of lower limb, anthropometric characteristics and fundamental explosive performance in handball players. Sportverletzung · Sportschaden, 33(2), 96–103. https://doi.org/10.1055/s-0043-124496

Hermes, M., Fry, A., Herda, T., Wray, M., Sontag, S., & Hatcher, M. (2019). Kinetics of vertical jump fatigue following a repeated jump protocol in recreationally trained males [Poster presentation]. 42nd National Strength and Conditioning Association Annual Conference.

Jastrjembskaia, N., & Titov, Y. (1999). Rhythmic gymnastics. Champaign: Human Kinetics.

Jensen, P., Scott, S., Krustrup, P., & Mohr, M. (2013). Physiological responses and performance in a simulated trampoline gymnastics competition in elite male gymnasts. Journal of Sports Sciences, 31(16), 1761–1769. https://doi.org/10.1080/02640414.2013.803591

Kupper, C., Roemer, K., Jusko, E., & Zentgraf, K. (2020). Distality of attentional focus and its role in postural balance control. Frontiers in Psychology, 11, 125. https://doi.org/10.3389/fpsyg.2020.00125

Lenk, C., Hackbarth, M., Mylo, M., Weigand, J., & Ferger, K. (2017). Evaluation eines Messsystems für die Flugzeitmessung im Trampolinsport. Technologien im Leistungssport 2: Tagungsband zur 18. Frühjahrsschule am 13./14. April 2016 in Leipzig, pp. 74–79

Márquez, G., Aguado, X., Alegre, L. M., & Férnandez-del-Olmo, M. (2013). Neuromechanical adaptation induced by jumping on an elastic surface. Journal of Electromyography and Kinesiology, 23(1), 62–69. https://doi.org/10.1016/j.jelekin.2012.06.012

Matsushima, M. (2024). Difference between muscle activities during jumping motion in descent and ascent phases on a trampoline. Science of Gymnastics Journal, 16(1), 5–13. https://doi.org/10.52165/sgj.16.1.5-13

Mayer, C. C., Bachler, M., Hörtenhuber, M., Stocker, C., Holzinger, A., & Wassertheurer, S. (2014). Selection of entropy-measure parameters for knowledge discovery in heart rate variability data. BMC Bioinformatics, 15(6), S2. https://doi.org/10.1186/1471-2105-15-S6-S2

Meckel, Y., May-Rom, M., Ekshtien, A., Eisenstein, T., Nemet, D., & Eliakim, A. (2015). Relationships among two repeated activity tests and aerobic fitness of volleyball players. The Journal of Strength and Conditioning Research, 29(8), 2122–2127. https://doi.org/10.1519/JSC.0000000000000859

Morin, J.-B., Dupuy, J., & Samozino, P. (2011). Performance and fatigue during repeated sprints: What is the appropriate sprint dose? The Journal of Strength & Conditioning Research, 25(7), 1918–1924. https://doi.org/10.1519/JSC.0b013e3181e075a3

Natera, A. O., Cardinale, M., & Keogh, J. W. L. (2020). The effect of high-volume power training on repeated high-intensity performance and the assessment of repeat power ability: A systematic review. Sports Medicine, 50(7), 1317–1339. https://doi.org/10.1007/s40279-020-01273-0

Natera, A. O., Chapman, D. W., Chapman, N. D., & Keogh, J. W. L. (2023). The reliability and validity of repeat power ability assessments and measurement indices in loaded vertical jumps. PeerJ, 11, e15553. https://doi.org/10.7717/peerj.15553

Ortega-Becerra, M., Pareja-Blanco, F., Jiménez-Reyes, P., Cuadrado-Peñafiel, V., & González-Badillo, J. J. (2018). Determinant factors of physical performance and specific throwing in handball players of different ages. The Journal of Strength & Conditioning Research, 32(6), 1778–1786. https://doi.org/10.1519/JSC.0000000000002050

Pereira, L. A., Nimphius, S., Kobal, R., Kitamura, K., Turisco, L. A. L., Orsi, R. C., Cal Abad, C. C., & Loturco, I. (2018). Relationship between change of direction, speed, and power in male and female national Olympic team handball athletes. The Journal of Strength & Conditioning Research, 32(10), 2987–2994. https://doi.org/10.1519/JSC.0000000000002494

Posit team (2023). RStudio: Integrated Development Environment for R. Posit Software, PBC, Boston, MA. http://www.posit.com/

Qian, J., Mao, Y., Tang, X., Li, Z., Wen, C., & Zhang, S. (2020). A finite element model for estimation of contact dynamics during a jumping movement on a trampoline. Journal of Human Kinetics, 73(1), 59–72. https://doi.org/10.2478/hukin-2019-0127

Sattler, T., Sekulic, D., Hadzic, V., Uljevic, O., & Dervisevic, E. (2012). Vertical jumping tests in volleyball: Reliability, validity, and playing-position specifics. The Journal of Strength & Conditioning Research, 26(6), 1532–1538. https://doi.org/10.1519/JSC.0b013e318234e838

Segev, S., & Meckel, Y. (2020). Repeated jump ability of young basketball players at different game stages and its relationship to aerobic capacity. International Journal of Physical Education, Fitness and Sports, 9(3), 24–31. https://doi.org/10.34256/ijpefs2034

Sevene, T. G., DeBeliso, M., Carson, C., Berning, J. M., Harris, C., & Adams, K. J. (2017). Continuous weighted jumping: Effects on vertical jump height. European Journal of Physical Education and Sport Science, 3(9). https://doi.org/10.5281/zenodo.847756

Taber, C., Butler, C., Dabek, V., Kochan, B., McCormick, K., Petro, E., Suchomel, T., & Merrigan, J. (2023). The effects of accentuated eccentric loading on barbell and trap bar countermovement jumps. International Journal of Strength and Conditioning, 3(1). https://doi.org/10.47206/ijsc.v3i1.213

Temfemo, A., Lelard, T., Carling, C., Mandengue, S. H., Chlif, M., & Ahmaidi, S. (2011). Feasibility and reliability of a repeated sprint test in children age 6 to 8 years. Pediatric Exercise Science, 23(4), 549–559. https://doi.org/10.1123/pes.23.4.549

Downloads

Published

2024-10-30

Issue

Section

Articles

How to Cite

Prosch, Y., Fleddermann, M.-T., Reichert, L., & Zentgraf, K. (2024). JUMP PERFORMANCE IN TRAMPOLINE ATHLETES AND HOW TO MEASURE IT: DEVELOPING A REPEATED JUMP TEST. Science of Gymnastics Journal, 16(3), 447-460. https://doi.org/10.52165/sgj.16.3.447-460