Investigating Properties of Electrically Conductive Textiles: A Review


  • Aulon Shabani Polytechnic University of Tirana, Department of Electrotechnics, Mother Teresa Square No. 1, Albania Author
  • Majlinda Hylli Polytechnic University of Tirana, Department of Textile and Fashion, Mother Teresa Square No. 1, Albania Author
  • Ilda Kazani Polytechnic University of Tirana, Department of Textile and Fashion, Mother Teresa Square No. 1, Albania Author



electro-conductive textiles, electrical resistivity, electro-thermal behaviour


Electro-conductive textiles are mostly fabrics that have conductive elements or electronics integrated into them to achieve electrical characteristics. They have acquired considerable attention in applications involving sensors, communications, heating textiles, entertainment, health care, safety etc. To produce electro-conductive textiles, several techniques, e.g. chemical treating with conductive polymers on various textile materials, or using different technologies, e.g. knitting, weaving, embroidery techniques to include conductive threads into fabric interconnections etc., are being used. Electro-conductive fabrics are flexible enough to be adapted to quick changes in any particular application, beginning with wearable purposes and sensing needs as specified by many different groups. The ability of electro-conductive textiles to conduct electricity is the most essential property they must possess. In addition, the applications that may be worn should have stable electrical, thermal and mechanical qualities. The most recent developments in the field of electro-conductive textiles represent the aim of this review, which analyses these properties, including the investigation of methods that are used to obtain conductive textiles, their electrical properties, thermal properties, and beyond that, the scientific methods that are used to measure and investigate electro-conductive textiles. We also focused on the textile materials used in studies, as well as the technologies used to make them conductive, which may be a guide for different interested groups for use in a variety of smart applications.


Download data is not yet available.


CEN/TR 16298:2011 Textiles and textile products - Smart textiles - Definitions, categorisation, applications and standardization needs. Newark : iTech, 2011, 32 p.

XUE, Pu. TAO, Xiaoming. LEUNG, Mei Yi, ZHANG, Hui. Electromechanical properties of conductive fibres, yarns and fabrics. In Wearable Electronics and Photonics. Edited by Xiaoming Tao. Cambridge : Woodhead Publishing, 2005, 81–104. DOI:

SCHWARZ, A., HAKUZIMANA, J., KACZYNSKA, A., BANASZCZYK, J., WESTBROEK, P., MCADAMS, E., MOODY, G., CHRONIS, Y., PRINIOTAKIS, G., DE MEY, G., TSELES, D. Gold coated para-aramid yarns through electroless deposition, Surface and Coatings Technology, 2010, 204(9–10), 1412–1418, doi: 10.1016/j.surfcoat.2009.09.038. DOI:

BANASZCZYK, Jedrzej, MEY, Gilbert De, SCHWARZ, Anne. Current distribution modelling in electroconductive fabrics. Fibres & Textiles in Eastern Europe, 2009, 17(2), 28–33.

Conductive fibres and yarns for smart textiles [online]. BEKAERT [accessed 26. 9. 2022]. Available on World Wide Web: <>.

Heating or conductive metallic yarns and fabrics for energy transfer within flexible structures or composite parts [online]. TIBTECH [accessed 26. 9. 2022]. Available on World Wide Web: <>.

Fibers & Yarns [online]. SHIELDEX [accessed 26. 9. 2022]. Available on World Wide Web: <>.

E-textiles 2021-2031: technologies, markets, players [online]. IDTechEx [accessed 26. 9. 2022]. Available on World Wide Web: <>.

PACELLI, Maria. LORIGA, Giannicola. TACCINI, Nicola, PARADISO, Rita. Sensing fabrics for monitoring physiological and biomechanical variables: e-textile solutions. In Proceedings of the 3rd IEEE-EMBS International Summer School and Symposium on Medical Devices and Biosensors, ISSS-MDBS 2006. IEEE, 2006, 1–4, doi: 10.1109/ISSMDBS.2006.360082. DOI:

GUO, Li, PETERSON, Joel, QURESHI, Waqas, MEHRJERDI, Adib Kalantar, BERGLIN, Lena, SKRIFVARS, Mikael. Knitted wearable stretch sensor for breathing monitoring application. In Ambience'11, Borås, Sweden, 2011,

FREIRE, Rachel, HONNET, Cedric, STROHMEIER, Paul. Second skin: an exploration of eTextile stretch circuits on the body. In TEI 2017 - Proceedings of the 11th International Conference on Tangible, Embedded, and Embodied Interaction, 2017, 653–658, doi: 10.1145/3024969.3025054. DOI:

FAN, W., HE, Q., MENG, K., TAN, X., ZHOU, Z., ZHANG, G., YANG, J., WANG, Z.L. Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Science Advances, 2020, 6(11), 1–10, doi: 10.1126/sciadv.aay2840. DOI:

MEOLI, Dina. Interactive electronic textiles: technologies, applications, opportunities, and market potential: MSc Thesis. Faculty of North Carolina State University, 2002,

GASANA, E., WESTBROEK, P., HAKUZIMANA, J., DE CLERCK, K., PRINIOTAKIS, G., KIEKENS, P., TSELES, D. Electroconductive textile structures through electroless deposition of polypyrrole and copper at polyaramide surfaces. Surface and Coatings Technology, 2006, 201(6), 3547–3551, doi: 10.1016/j.surfcoat.2006.08.128. DOI:

HERSH, S.P., MONTGOMERY, D.J. Electrical resistance measurements on fibres and fibre assemblies. Textile Research Journal, 1952, 22(12), 805–818, doi: 10.1177/004051755202201207. DOI:

AZOULAY, J. Anisotropy in electric properties of fabrics containing new conductive fibres. IEEE Transactions on Electrical Insulation, 1988, 23(3), 383–386, doi: 10.1109/14.2378. DOI:

BERBERI, Pellumb G. A new method for evaluating electrical resistivity of textile assemblies. Textile Research Journal, 1998, 68(6), 407–412, 1998, doi: 10.1177/004051759806800604. DOI:

MEOLI, Dina, MAY-PLUMLEE, Traci. Interactive electronic textile development: a review of technologies. Journal of Textile and Apparel, Technology and Management, 2002, 2(2), 1–12.

TAPPURA, K., NURMI, S. Computational modeling of charge dissipation of fabrics containing conductive fibres. Journal of Electrostatics, 2003, 58(1–2), 117–133, doi: 10.1016/S0304-3886(02)00202-4. DOI:

KAYNAK, Akif, BELTRAN, Rafael. Effect of synthesis parameters on the electrical conductivity of polypyrrole-coated poly(ethylene terephthalate) fabrics. Polymer International, 2003, 52(6), 1021–1026, doi: 10.1002/pi.1195. DOI:

XUE, TAO, X.M. KWOK, Keith W.Y. LEUNG, M.Y., YU, T.X. Electromechanical behavior of fibres coated with an electrically conductive polymer. Textile Research Journal, 2004, 74(10), 929–936, doi: 10.1177/004051750407401013. DOI:

DHAWAN, Anuj, SEYAM, Abdelfattah M., GHOSH, Tushar K., MUTH, John F. Woven fabric-based electrical circuits. Part I: evaluating interconnect methods. Textile Research Journal, 2004, 74(10), 913–919, doi: 10.1177/004051750407401011. DOI:

WU, Jian, ZHOU, Dezhi, TOO, Chee O., WALLACE, Gordon G. Conducting polymer coated lycra. Synthetic Metals, 2005, 155(3), 698–701, doi: 10.1016/j.synthmet.2005.08.032. DOI:

VARESANO, Alessio, DALL’ACQUA, Lorenzo, TONIN, Claudio. A study on the electrical conductivity decay of polypyrrole coated wool textiles. Polymer Degradation and Stability, 2005, 89(1), 125–132, doi: 10.1016/j.polymdegradstab.2005.01.008. DOI:

KIM, Bohwon, KONCAR, Vladan, DUFOUR, Claude. Polyaniline-coated PET conductive yarns: study of electrical, mechanical, and electro-mechanical properties. Journal of Applied Polymer Science, 2006, 101(3), 1252–1256, doi: 10.1002/app.22799. DOI:

WANG, Jiajun, KAYNAK, Akif, WANG, Lijing, LIU, Xin. Thermal conductivity studies on wool fabrics with conductive coatings. Journal of the Textile Institute, 2006, 97(3), 265–270, doi: 10.1533/joti.2005.0298. DOI:

ASANOVIC, Koviljka A., MIHAJLIDI, Tatjana A., MILOSAVLJEVIC, Svetlana V., CEROVIC, Dragana D., DOJCILOVIC, Jablan R. Investigation of the electrical behavior of some textile materials. Journal of Electrostatics, 2007, 65(3), 162–167, doi: 10.1016/j.elstat.2006.07.008. DOI:

LOCHER, Ivo, TRÖSTER, Gerhard. Enabling technologies for electrical circuits on a woven monofilament hybrid fabric. Textile Research Journal, 2008, 78(7), 583–594, doi: 10.1177/0040517507081314. DOI:

BANASZCZYK, Jedrzej, ANCA, Anamaria, DE MEY, Gilbert. Infrared thermography of electroconductive woven textiles. Quantitative InfraRed Thermography Journal, 2009, 6(2), 163–173, doi: 10.3166/qirt.6.163-173. DOI:

LATIFI, Masoud, PAYVANDY, Pedram, YOUSEFZADEH-CHIMEH, Maryam. Electro-conductive textile yarns. In Technical Textile Yarn. Edited by R. Alagirusamy and A. Das. Woodhead Publishing, 2010, 298–326, doi: 10.1533/9781845699475.2.298. DOI:

GU, Jian Feng, GORGUTSA, Stephan, SKOROBOGATIY, Maksim. Soft capacitor fibres using conductive polymers for electronic textiles. Smart Materials and Structures, 2010, 19(11), doi: 10.1088/0964-1726/19/11/115006. DOI:

LI, Li, AU, Wai Man, WAN, Kam Man, WAN, Sai Ho, CHUNG, Wai Yee, WONG, Kwok Shing. A resistive network model for conductive knitting stitches. Textile Research Journal, 2010, 80(10), 935–947, doi: 10.1177/0040517509349789. DOI:

DING, Yujie, INVERNALE, Michael A., SOTZING, Gregory A. Conductivity trends of pedot-pss impregnated fabric and the effect of conductivity on electrochromic textile. ACS Applied Materials and Interfaces, 2010, 2(6), 1588–1593, doi: 10.1021/am100036n. DOI:

KAZANI, I., DE MEY, G., HERTLEER, C., BANASZCZYK, J., SCHWARZ, A., GUXHO, G., VAN LANGENHOVE, L. Van Der Pauw method for measuring resistivities of anisotropic layers printed on textile substrates. Textile Research Journal, 2011, 81(20), 2117–2124, doi: 10.1177/0040517511416280. DOI:

YOON, Boram, LEE, Seungsin. Designing waterproof breathable materials based on electrospun nanofibres and assessing the performance characteristics. Fibres and Polymers, 2011, 12(1), 57–64, doi: 10.1007/s12221-011-0057-9. DOI:

PETERSEN, Pam, HELMER, Richard, PATE, Margaret, EICHHOFF, Julian. Electronic textile resistor design and fabric resistivity characterization. Textile Research Journal, 2011, 81(13), 1395–1404, doi: 10.1177/0040517511404591. DOI:

KACPRZYK, Ryszard. Measurements of the volume and surface resistance of textile materials. Fibres and Textiles in Eastern Europe, 2011, 84(1), 47–49.

PATEL, Pinal C., VASAVADA, Divyam, MANKODI, Hireni R. Applications of electrically conductive yarns in technical textiles. In 2012 IEEE International Conference on Power System Technology, POWERCON 2012. IEEE, 2012, 1–6, doi: 10.1109/PowerCon.2012.6401374. DOI:

TOKARSKA, Magdalena. Measuring resistance of textile materials based on Van der Pauw method. Indian Journal of Fibre and Textile Research, 2013, 38(2), 198–201.

YEN, Ruey Hor, CHEN, Chien Yu, HUANG, Ching Tang, CHEN, Pei Jing. Numerical study of anisotropic thermal conductivity fabrics with heating elements. International Journal of Numerical Methods for Heat and Fluid Flow, 2013, 23(5), 750–771, doi: 10.1108/HFF-03-2011-0050. DOI:

HAMDANI, Syed Talha Ali, POTLURI, Prasad, FERNANDO, Anura. Thermo-mechanical behavior of textile heating fabric based on silver coated polymeric yarn. Materials, 2013, 6(3), 1072–1089, doi: 10.3390/ma6031072. DOI:

TOKARSKA, Magdalena. FRYDRYSIAK, Michał, ZIȨBA, Janusz. Electrical properties of flat textile material as inhomegeneous and anisotropic structure. Journal of Materials Science: Materials in Electronics, 2013, 24(12), 5061–5068, doi: 10.1007/s10854-013-1524-4. DOI:

ODHIAMBO, Sheilla, HERTLEER, Carla, LANGENHOVE, Lieva Van, MEY, Gilbert De, DEFERME, Wim, STRYCKERS, Jeroen. Comparison of commercial brands of PEDOT : PSS in E lectric “Capattery” integrated in textile structure. In Proceedings of the 20th International Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2013. IEEE, 2013, 389–392.

STOPPA, Matteo, CHIOLERIO, Alessandro. Wearable electronics and smart textiles: a critical review. Sensors (Switzerland), 2014, 14(7), 11957–11992, doi: 10.3390/s140711957. DOI:

WEGENE, Jima Demisie, THANIKAIVELAN, Palanisamy. Conducting leathers for smart product applications. Industrial and Engineering Chemistry Research, 2014, 53(47), 18209–18215, doi: 10.1021/ie503956p. DOI:

CAPINERI, Lorenzo. Resistive sensors with smart textiles for wearable technology: from fabrication processes to integration with electronics. Procedia Engineering, 2014, 87, 724–727, doi: 10.1016/j.proeng.2014.11.748. DOI:

TOKARSKA, Magdalena. Determination of fabric surface resistance by van der pauw method in case of contacts distant from the sample edge. Autex Research Journal, 2014, 14(2), 55–60, doi: 10.2478/v10304-012-0050-4. DOI:

USMA, Clara, KOUZANI, Abbas, CHUA, Julian, AROGBONLO, Adetokunbo, ADAMS, Scott, GIBSON, Ian. Fabrication of force sensor circuits on wearable conductive textiles. Procedia Technology, 2015, 20, 263–269, doi: 10.1016/j.protcy.2015.07.042. DOI:

QUINTERO, A.V., CAMARA, M., MATTANA, G., GASCHLER, W., CHABRECEK, P., BRIAND, D., DE ROOIJ, N. F. Capacitive strain sensors inkjet-printed on PET fibres for integration in industrial textile. Procedia Engineering, 2015, 120, 279–282, doi: 10.1016/j.proeng.2015.08.613. DOI:

AROGBONLO, Adetokunbo, USMA, Clara, KOUZANI, Abbas, GIBSON, Ian. Design and fabrication of a capacitance based wearable pressure sensor using E-textiles. Procedia Technology, 2015, 20, 270–275, doi: 10.1016/j.protcy.2015.07.043. DOI:

FELCZAK, Mariusz, DE MEY, Gilbert, WIĘCEK, Bogusław, MICHALAK, Marina. Lateral and perpendicular thermal conductivity measurement on textile double layers. Fibres and Textiles in Eastern Europe, 2015, 23(4), 61–65.

LIPOL, Lefayet Sultan, ISLAM, Mayedul, SULTANA, Nazrima. The resistance measurement method of the conducting textiles. European Scientific Journal, ESJ, 2016, 12(27), 242–249, doi: 10.19044/esj.2016.v12n27p242. DOI:

KARIM, N., AFROJ, S., TAN, S., HE, P., FERNANDO, A., CARR, C., NOVOSELOV, K.S. Scalable production of graphene-based wearable e-textiles. ACS Nano, 12017, 1(12), 12266–12275, doi: 10.1021/acsnano.7b05921. DOI:

BAHADIR, Senem Kursun, SAHIN, Umut Kivanc, KIRAZ, Alper. Modeling of surface temperature distributions on powered e-textile structures using an artificial neural network. Textile Research Journal, 2019, 89(3), 311–321, doi: 10.1177/0040517517743689. DOI:

RYAN, Jason D, MENGISTIE, Desalegn Alemu, GABRIELSSON, Roger, LUND, Anja, MÜLLER, Christian. Machine-washable PEDOT:PSS dyed silk yarns for electronic textiles. ACS Applied Materials and Interfaces, 2017, 9(10), 9045–9050, doi: 10.1021/acsami.7b00530. DOI:

ALHASHMI ALAMER, Fahad. A simple method for fabricating highly electrically conductive cotton fabric without metals or nanoparticles, using PEDOT:PSS. Journal of Alloys and Compounds, 2017, 702, 266–273, doi: 10.1016/j.jallcom.2017.01.001. DOI:

NURAMDHANI, Ida, GOKCEOREN, Argun Talat, ODHIAMBO, Sheilla Atieno, De MEY, Gilbert D, HERTLEER, Carla, van LANGENHOVE, Lieva. Electrochemical impedance analysis of a PEDOT: PSS-based textile energy storage device. Materials, 2018, 11(1), 1–11, doi: 10.3390/ma11010048. DOI:

VILLANUEVA, Rolando, GANTA, Deepak, GUZMAN, Carlos. Mechanical, in-situ electrical and thermal properties of wearable conductive textile yarn coated with polypyrrole/carbon black composite. Materials Research Express, 2019, 6(1), 1-9, doi: 10.1088/2053-1591/aae607. DOI:

LUND, Anja,. VAN DER VELDEN, Natascha M., PERSSON, Nils Krister, HAMEDI, Mahiar M., MÜLLER, Christian. Electrically conducting fibres for e-textiles: an open playground for conjugated polymers and carbon nanomaterials. Materials Science and Engineering R: Reports, 2018, 126, 1–29, doi: 10.1016/j.mser.2018.03.001. DOI:

LEE, J.S., JO, H., CHOE, H.S., LEE, D.S., JEONG, H., LEE, H.R., KWEON, J.-H., LEE, H., MYONG, R.S.,, NAM, Y. Electro-thermal heating element with a nickel-plated carbon fabric for the leading edge of a wing-shaped composite application. Composite Structures, 2022, 289, 1–12, doi: 10.1016/j.compstruct.2022.115510. DOI:

CHATTERJEE, Kony. TABOR, Jordan, GHOSH, Tushar K. Electrically conductive coatings for fibre-based E-Textiles. Fibres, 2019, 7(6), 1–45, doi: 10.3390/fib7060051. DOI:

MOHAMED, Aliaa Abdel Aziz, EZZAT, Mohamed M., MEGEID, Zaynab M. Abdel, SAEED, Ahmed, ABDEL-HAMED, Hebatullah A.A., EL-OKDA, Enas A.H. Suitability of conductive knit fabric for sensing human breathing. Journal of Textile and Apparel, Technology and Management, 11(1), 1–7, 2019, doi: 10.21608/jsrs.2016.15319. DOI:

SHABANI, Aulon. HYLLI, Majlinda. KAZANI, Ilda, BERBERI, Pellumb. Resistivity behavior of leather after electro-conductive treatment. Textile & Leather Review, 2019, 2(1), 15–22, doi: 10.31881/tlr.2019.15. DOI:

SHABANI, Aulon. HYLLI, Majlinda. KAZANI, Ilda. BERBERI, Pellumb. ZAVALANI, Orion, GUXHO, Genti. The anisotropic structure of electro conductive leather studied by Van der Pauw method. Textile & Leather Review, 2019, 2(3), 136–144, doi: 10.31881/tlr.2019.16. DOI:

AKBARPOUR, Hamed, RASHIDI, Alimorad, MIRJALILI, Mostafa, NAZARI, Ali. Comparison of the conductive properties of polyester/viscose fabric treated with Cu nanoparticle and MWCNTs. Journal of Nanostructure in Chemistry, 2019, 9(4), 335–348, doi: 10.1007/s40097-019-00322-z. DOI:

HARDIANTO, Hardianto, MALENGIER, Benny, DE MEY, Gilbert, VAN LANGENHOVE, Lieva, HERTLEER, Carla. Textile yarn thermocouples for use in fabrics. Journal of Engineered Fibres and Fabrics, 2019, 14, doi: 10.1177/1558925019836092. DOI:

KAMYSHNY, Alexander, MAGDASSI, Shlomo. Conductive nanomaterials for 2D and 3D printed flexible electronics. Chemical Society Reviews, 2019, 48(6), 1712–1740, doi: 10.1039/c8cs00738a. DOI:

NURAMDHANI, Ida, MANOJ, Jose, SAMYN, Pieter, ADRIAENSENS, Peter, MALENGIER, Benny, DEFERME, Wim, DE MEY, Gilbert, VAN LANGENHOVE, Lieva. Charge-discharge characteristics of textile energy storage devices having different PEDOT:PSS ratios and conductive yarns configuration. Polymers, 2019, 11(2), 1–17, doi: 10.3390/polym11020345. DOI:

LUND, Anja, TIAN, Yuan, DARABI, Sozan, MÜLLER, Christian. A polymer-based textile thermoelectric generator for wearable energy harvesting. Journal of Power Sources, 2020, 480, 1–11, doi: 10.1016/j.jpowsour.2020.228836. DOI:

AFROJ, Shaila, TAN, Sirui, ABDELKADER, Amr M., NOVOSELOV, Kostya S., KARIM, Nazmul. Highly conductive, scalable, and machine washable graphene-based e-textiles for multifunctional wearable electronic applications. Advanced Functional Materials, 2020, 30(23), 1–10, doi: 10.1002/adfm.202000293. DOI:

TSEGHAI, Granch Berhe, MENGISTIE, Desalegn Alemu, MALENGIER, Benny, FANTE, Kinde Anlay, VAN LANGENHOVE, Lieva. PEDOT:PSS-based conductive textiles and their applications. Sensors (Switzerland), 2020, 20(7), 1–18, doi: 10.3390/s20071881. DOI:

HYLLI, Majlinda, SHABANI, Aulon, KAZANI, Ilda, DRUSHKU, Spiro, GUXHO, Genti. The color fastness properties of conductive leather improved by the use of mordants. IOP Conference Series: Materials Science and Engineering, 2020, 827(1), 1–6, doi: 10.1088/1757-899X/827/1/012036. DOI:

KRIFA, Mourad. Electrically conductive textile materials – application in flexible sensors and antennas. Textiles, 2021, 1(2), 239–257, doi: 10.3390/textiles1020012. DOI:

ANGELUCCI, A., CAVICCHIOLI, M., CINTORRINO, I. A., LAURICELLA, G., ROSSI, C., STRATI, S., ALIVERTI, A. Smart textiles and sensorized garments for physiological monitoring: a review of available solutions and techniques. Sensors (Switzerland), 2021, 21(3), 1–23, doi: 10.3390/s21030814. DOI:

JIN, In Su, LEE, Jea Uk, JUNG, Jae Woong. A facile solution engineering of PEDOT: PSS-coated conductive textiles for wearable heater applications, Polymers, 2021, 13(6), 1–10, doi: 10.3390/polym13060945. DOI:

SHAKERI SIAVASHANI, Vahid, NEVIN, Gursoy, MONTAZER, Majid, ALTAY, Pelin. Highly stretchable conductive fabric using knitted cotton/lycra treated with polypyrrole/silver NPs composites post-treated with PEDOT:PSS. Journal of Industrial Textiles, 2022, 51(3 suppl.), 4571S-4588S, doi: 10.1177/15280837211059212. DOI:

ROGALE, Snježana Firšt, ROGALE, Dubravko, KNEZI, Željko. Measurement method for the simultaneous determination of thermal resistance and temperature gradients in the determination of thermal properties of textile material layers. Materials, 2021, 14(22), 1-20, doi: 10.3390/ma14226853. DOI:

KAYNAK, Akif, ZOLFAGHARIAN, Ali, FEATHERBY, Toby, BODAGHI, Mahdi, PARVEZ MAHMUD, M.A., KOUZANI, Abbas Z. Electrothermal modeling and analysis of polypyrrole-coated wearable e-textiles. Materials, 14(3), 1–16, 2021, doi: 10.3390/ma14030550. DOI:

ADAK, Bapan. Utilization of nanomaterials in conductive smart- textiles: a review. Journal of Textile Science & Fashion Technology, 2021, 8(1), 14–16, doi: 10.33552/jtsft.2021.08.000678. DOI:

WANG, Peng, WANG, Yong, XU, Qingbo, CHEN, Qian, ZHANG, Yan Yan, XU, Zhenzhen. Fabrication of durable and conductive cotton fabric using silver nanoparticles and PEDOT:PSS through mist polymerization. Applied Surface Science, 2022, 592, 1–9, doi: 10.1016/j.apsusc.2022.153314. DOI:

LUO, Yuzi, CHO, Gilsoo. Fabrication of electroconductive textiles based polyamide/polyurethan knitted fabric coated with PEDOT:PSS/non-oxidized graphene. Fashion & Textile Research Journal, 2022, 24(1), 146–155, doi: 10.5805/SFTI.2022.24.1.146. DOI:

PENAVA, Željko, PENAVA, Diana Šimić, KNEZIĆ, Željko. Heat as a conductivity factor of electrically conductive yarns woven into fabric. Materials, 2022, 15(3), 1–18, doi: 10.3390/ma15031202. DOI:

REPON, Md Reazuddin, LAURECKIENE, Ginta, MIKUCIONIENE, Daiva. Effect of stretching on thermal behaviour of electro-conductive weft-knitted composite fabrics. Polymers, 2022, 14(2), 1–23, doi: 10.3390/polym14020249. DOI:

ALAMER, Fahad Alhashmi, BEYARI, Rawan F. Overview of the influence of silver, gold, and titanium nanoparticles on the physical properties of PEDOT:PSS-coated cotton fabrics. Nanomaterials, 2022, 12(9), 1–21, doi: 10.3390/nano12091609. DOI:

KALAOGLU-ALTAN, Ozlem Ipek, KAYAOGLU, Burcak Karaguzel, TRABZON, Levent. Improving thermal conductivities of textile materials by nanohybrid approaches. iScience, 2022, 25(3), 1–24, doi: 10.1016/j.isci.2022.103825. DOI:

TOKARSKA, Magdalena. A mixing model for describing electrical conductivity of a woven structure. Materials, 2022, 15(7), 1–14, doi: 10.3390/ma15072512. DOI:

ABOU TALEB, Marwa, MOWAFI, Salwa, EL-SAYED, Hosam, EL-NEWASHY, Rania. Facile development of electrically conductive comfortable fabrics using metal ions. Journal of Industrial Textiles, 2022, 51(7), 1100–1120, doi: 10.1177/1528083719893713. DOI:

UZUN, Muhammet, SANCAK, Erhan, USTA, Ismail. The use of conductive wires for smart and protective textiles. In 2015 E-Health and Bioengineering Conference, EHB 2015. IEEE, 2015, 1–4, doi: 10.1109/EHB.2015.7391494. DOI:

AVLONI, Jamshid, LAU, Rosa, OUYANG, Meng, FLORIO, Luca, HENN, Arthur R., SPARAVIGNA, Amelia. Polypyrrole coated nonwovens for electromagnetic shielding. Journal of Industrial Textiles, 2008, 38(1), 55–68, doi: 10.1177/1528083707087834. DOI:

FERRERO, Franco, NAPOLI, Liuba, TONIN, Claudio, VARESANO, Alessio. Pyrrole chemical polymerization on textiles: Kinetics and operating conditions. Journal of Applied Polymer Science, 2006, 102(5), 4121–4126, doi: 10.1002/app.24149. DOI:

BHAT, Narendra V., SESHADRI, Devender T., NATE, Mandar M., GORE, Ajit V. Development of conductive cotton fabrics for heating devices. Journal of Applied Polymer Science, 2006, 102(5), 4690–4695, doi: 10.1002/app.24708. DOI:

KAYNAK, Akif, WANG, Lijing, HURREN, Chris, WANG, Xungai. Characterization of conductive polypyrrole coated wool yarns. Fibres and Polymers, 2002, 3(1), 24–30, doi: 10.1007/BF02875365. DOI:

SEUNG LEE, Han, HONG, Juan. Chemical synthesis and characterization of polypyrrole coated on porous membranes and its electrochemical stability. Synthetic Metals, 2000, 113(1–2), 115–119, doi: 10.1016/S0379-6779(00)00193-4. DOI:

KINCAL, Dilek, KUMAR, Anil, CHILD, Andrew D., REYNOLDS, John R. Conductivity switching in polypyrrole-coated textile fabrics as gas sensors. Synthetic Metals, 1998, 92(1), 53–56, doi: 10.1016/s0379-6779(98)80022-2. DOI:

LEKPITTAYA, Porntip, YANUMET, Nantaya, GRADY, Brian P., REAR, Edgar A.O. Resistivity of conductive polymer – coated fabric. Applied Polymer, 2003, 92(4), 2629–2636, doi: 10.1002/app.20270. DOI:

KIM, Bohwon, KONCAR, Vladan, DEVAUX, Eric, DUFOUR, Claude, VIALLIER, Pierre. Electrical and morphological properties of PP and PET conductive polymer fibres. Synthetic Metals, 2004, 146(2), 167–174, doi: 10.1016/j.synthmet.2004.06.023. DOI:

OH, Kyung Wha, KIM, Seong Hun, KIM, Eun Ae. Improved surface characteristics and the conductivity of polyaniline-nylon 6 fabrics by plasma treatment. Journal of Applied Polymer Science, 2001, 81(3), 684–694, doi: 10.1002/app.1485. DOI:

SCHOLZ, Jana, NOCKE, Günter, HOLLSTEIN, Frank, WEISSBACH, Alexander. Investigations on fabrics coated with precious metals using the magnetron sputter technique with regard to their anti-microbial properties. Surface and Coatings Technology, 2005, 192(2–3), 252–256, doi: 10.1016/j.surfcoat.2004.05.036. DOI:

KUMAR, Satish, DOSHI, Harit, SRINIVASARAO, Mohan. PARK, Jung O., SCHIRALDI, David A. Fibres from polypropylene/nano carbon fibre composites. Polymer, 2002, 43(5), 1701–1703, doi: 10.1016/S0032-3861(01)00744-3. DOI:

ISLAM, G. M.Nazmul, ALI, M. Azam, COLLIE, Stewart. Polydopamine treated and PEDOT:PSS coated wash durable conductive textiles for wearable applications. Fibres and Polymers, 2022, 23(4), 914–924, doi: 10.1007/s12221-022-3080-0. DOI:

SHATERI-KHALILABAD, Mohammad, YAZDANSHENAS, Mohammad E. Fabricating electroconductive cotton textiles using graphene. Carbohydrate Polymers, 2013, 96(1), 190–195, doi: 10.1016/j.carbpol.2013.03.052. DOI:

MAKOWSKI, T., SVYNTKIVSKA, M., PIORKOWSKA, E., MIZERSKA, U., FORTUNIAK, W., KOWALCZYK, D., BRZEZINSKI, S., KREGIEL, D. Antibacterial electroconductive composite coating of cotton fabric. Materials, 2022, 15(3), 1–9, doi: 10.3390/ma15031072. DOI:

BLACHOWICZ, Tomasz, EHRMANN, Andrea. Conductive electrospun nanofibre mats, Materials, 2020, 13(1), 1–17, doi: 10.3390/ma13010152. DOI:

YEO, Leslie Y., FRIEND, James R. Electrospinning carbon nanotube polymer composite nanofibres. Journal of Experimental Nanoscience, 2006, 1(2), 177–209, doi: 10.1080/17458080600670015. DOI:

GOMMANS, Hans H., ALLDREDGE, Jacob W., TASHIRO, Hideo, PARK, Jin, MAGNUSON, John, RINZLER, Andrew G. Fibres of aligned single-walled carbon nanotubes: polarized raman spectroscopy. Journal of Applied Physics, 2000, 88(5), 2509–2514, doi: 10.1063/1.1287128. DOI:

VIGOLO, B., PENICAUD, A., COULON, C., SAUDER, C., PAILLER, R., JOURNET, C., BERNIER, P., POULIN, P. Macroscopic fibres and ribbons of oriented carbon nanotubes. Science, 2000, 290(5495), 1331–1334, doi: 10.1126/science.290.5495.1331. DOI:

JESTIN, Simon, POULIN, Philippe. Wet spinning of CNT-based fibres. In Nanotube superfiber materials. Edited by Mark J. Schulz, Vesselin N. Shanov and Zhangzhang Yin. Elsevier, 2013, 167–209, doi: 10.1016/B978-1-4557-7863-8.00006-2. DOI:

HAGGENMUELLER, Reto, GOMMANS, Hans H., RINZLER, Andrew G., FISCHER, John E., WINEY, Karen I. Aligned single-wall carbon nanotubes in composites by melt processing methods. Chemical Physics Letters, 2000, 330(3–4), 219–225, doi: 10.1016/S0009-2614(00)01013-7. DOI:

KHAIR, Nipa. ISLAM, Rashedul, SHAHARIAR, Hasan. Carbon-based electronic textiles: materials, fabrication processes and applications. Journal of Materials Science, 2019, 54(14), 10079–10101, doi: 10.1007/s10853-019-03464-1. DOI:

GÜLTEKİN, N. D., USTA, İsmail. Investigation of thermal and electrical conductivity properties of carbon black coated cotton fabrics. Marmara University Journal of Science, 2015, 27(SI), 91–94, doi: 10.7240/mufbed.67752. DOI:

HASSAN, B.S., ISLAM, G.M.N., HAQUE, A.N.M.A. Applications of nanotechnology in textiles : a review. Advanced Research in Textile Engineering, 2019, 4(2), 1–9.

SABOOR, Fahimeh Hooriabad, HADIAN-GAZVINI, Samaneh, SHAHSAVARI, Shadab. Applications of carbon-based conductive nanomaterials on e-textiles. In Nanosensors and nanodevices for smart multifunctional textiles. Edited by Andrea Ehrmann, Tuan Anh Nguyen and Phuong Nguyen. Elsevier, 2020, 245–165, doi: 10.1016/B978-0-12-820777-2.00015-7. DOI:

SHIN, Dong Youn, LEE, Yongshik, KIM, Chung Hwan. Performance characterization of screen printed radio frequency identification antennas with silver nanopaste. Thin Solid Films, 2009, 517(21), 6112–6118, doi: 10.1016/j.tsf.2009.05.019. DOI:

van der PAUW, L.J. A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Research Reports, 1958, 13(1), 1–9.

ŠAFÁŘOVÁ, Veronika, MILITKÝ, Jiří. A study of electrical conductivity of hybrid yarns containing metal fibres. Journal of Materials Science and Engineering B, 2012, 2(2), 109–114.

AUSSERLECHNER, Udo. Closed form expressions for sheet resistance and mobility from Van-der-Pauw measurement on 90° symmetric devices with four arbitrary contacts. Solid-State Electronics, 2016, 116, 46–55, doi: 10.1016/j.sse.2015.11.030. DOI:

RAMADAN, Ahmed A., GOULD, Robert D., ASHOUR, Ahmed. On the Van der Pauw method of resistivity measurements. Thin Solid Films, 1994, 239(2), 272–275, doi: 10.1016/0040-6090(94)90863-X. DOI:

RÄTHEL, Jan. HERRMANN, Mathias, BECKERT, Wieland. Temperature distribution for electrically conductive and non-conductive materials during Field Assisted Sintering (FAST). Journal of the European Ceramic Society, 2009, 29(8), 1419–1425, doi: 10.1016/j.jeurceramsoc.2008.09.015. DOI:

REINERS, Priscilla, KYOSEV, Yordan, SCHACHER, Laurence, ADOLPHE, Dominique. About the cutting resistance measurement of textiles. In XIIIth International Izmir Textile and Apparel Symposium, April 2-5 2014, 447–452.

PAWLAK, Ryszard, LEBIODA, Marcin, MARIUSZ, Tomczyk, RYMASZEWSKI, Jacek, KORZENIEWSKA, Ewa, WALCZAK, Maria. Surface heat sources on textile composites - Modeling and implementation. In 2017 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering, ISEF 2017. IEEE, 2017, 1–2, doi: 10.1109/ISEF.2017.8090740. DOI:

KHAN, Saleem, TINKU, Sajina, LORENZELLI, Leandro, DAHIYA, Ravinder S. Flexible tactile sensors using screen-printed P(VDF-TrFE) and MWCNT/PDMS composites. IEEE Sensors Journal, 2015, 15(6), 3146–3155, doi: 10.1109/JSEN.2014.2368989. DOI:

LEE, J., KWON, H., SEO, J., SHIN, S., KOO, J.H., PANG, C., SON, S., KIM, J.H., JANG, Y.H., KIM, D.E., LEE, T. Conductive fibre-based ultrasensitive textile pressure sensor for wearable electronics. Advanced Materials, 2015, 27(15), 2433–2439, doi: 10.1002/adma.201500009. DOI:

ROOT, Waleri, BECHTOLD, Thomas, PHAM, Tung. Textile-Integrated thermocouples for temperature measurement. Materials, 2020, 13(3), 1–22, doi: 10.3390/ma13030626. DOI:

ARRUDA, Luisa M., MOREIRA, Inês SANIVADA, Usha Kiran, CARVALHO, Helder, FANGUEIRO, Raul. Development of piezoresistive sensors based on graphene nanoplatelets screen-printed on woven and knitted fabrics: optimisation of active layer formulation and transversal/longitudinal textile direction. Materials, 2022, 15(15), 1–25, doi: 10.3390/ma15155185. DOI:

CHO, Seungse, CHANG, Taehoo, YU, Tianhao, LEE, Chi Hwan. Smart electronic textiles for wearable sensing and display. Biosensors, 2022, 12(4), 1–30, doi: 10.3390/bios12040222. DOI:

SINHA, Ankita, DHANJAI. STAVRAKIS, Adrian K., STOJANOVIĆ, Goran M. Textile-based electrochemical sensors and their applications. Talanta, 2022, 244, 2022, 1–16, doi: 10.1016/j.talanta.2022.123425. DOI:

HUGHES-RILEY, Theodore, DIAS, Tilak, CORK, Colin. A historical review of the development of electronic textiles. Fibres, 2018, 6(2), 1–15, doi: 10.3390/fib6020034. DOI:

PEI, Eujin, SHEN, Jinsong, WATLING, Jennifer. Direct 3D printing of polymers onto textiles: experimental studies and applications. Rapid Prototyping Journal, 2015, 21(5), 556–571, doi: 10.1108/RPJ-09-2014-0126. DOI:

MELLIN, P., JÖNSSON, C., ÅKERMO, M., FERNBERG, P., NORDENBERG, E., BRODIN, H., STRONDL, A. Nano-sized by-products from metal 3D printing, composite manufacturing and fabric production. Journal of Cleaner Production, 2016, 139, 1224–1233, doi: 10.1016/j.jclepro.2016.08.141. DOI:






Scientific article

How to Cite

Shabani, A., Hylli, M., & Kazani, I. (2022). Investigating Properties of Electrically Conductive Textiles: A Review . Tekstilec, 65(3), 194-217.

Similar Articles

1-10 of 46

You may also start an advanced similarity search for this article.