Investigating Properties of Electrically Conductive Textiles: A Review
DOI:
https://doi.org/10.14502/tekstilec.65.2022045Keywords:
electro-conductive textiles, electrical resistivity, electro-thermal behaviourAbstract
Electro-conductive textiles are mostly fabrics that have conductive elements or electronics integrated into them to achieve electrical characteristics. They have acquired considerable attention in applications involving sensors, communications, heating textiles, entertainment, health care, safety etc. To produce electro-conductive textiles, several techniques, e.g. chemical treating with conductive polymers on various textile materials, or using different technologies, e.g. knitting, weaving, embroidery techniques to include conductive threads into fabric interconnections etc., are being used. Electro-conductive fabrics are flexible enough to be adapted to quick changes in any particular application, beginning with wearable purposes and sensing needs as specified by many different groups. The ability of electro-conductive textiles to conduct electricity is the most essential property they must possess. In addition, the applications that may be worn should have stable electrical, thermal and mechanical qualities. The most recent developments in the field of electro-conductive textiles represent the aim of this review, which analyses these properties, including the investigation of methods that are used to obtain conductive textiles, their electrical properties, thermal properties, and beyond that, the scientific methods that are used to measure and investigate electro-conductive textiles. We also focused on the textile materials used in studies, as well as the technologies used to make them conductive, which may be a guide for different interested groups for use in a variety of smart applications.
Downloads
References
CEN/TR 16298:2011 Textiles and textile products - Smart textiles - Definitions, categorisation, applications and standardization needs. Newark : iTech, 2011, 32 p.
XUE, Pu. TAO, Xiaoming. LEUNG, Mei Yi, ZHANG, Hui. Electromechanical properties of conductive fibres, yarns and fabrics. In Wearable Electronics and Photonics. Edited by Xiaoming Tao. Cambridge : Woodhead Publishing, 2005, 81–104. DOI: https://doi.org/10.1533/9781845690441.81
SCHWARZ, A., HAKUZIMANA, J., KACZYNSKA, A., BANASZCZYK, J., WESTBROEK, P., MCADAMS, E., MOODY, G., CHRONIS, Y., PRINIOTAKIS, G., DE MEY, G., TSELES, D. Gold coated para-aramid yarns through electroless deposition, Surface and Coatings Technology, 2010, 204(9–10), 1412–1418, doi: 10.1016/j.surfcoat.2009.09.038. DOI: https://doi.org/10.1016/j.surfcoat.2009.09.038
BANASZCZYK, Jedrzej, MEY, Gilbert De, SCHWARZ, Anne. Current distribution modelling in electroconductive fabrics. Fibres & Textiles in Eastern Europe, 2009, 17(2), 28–33.
Conductive fibres and yarns for smart textiles [online]. BEKAERT [accessed 26. 9. 2022]. Available on World Wide Web: <https://www.bekaert.com/en/products/basic-materials/textile/conductive-fibers-and-yarns-for-smart-textiles>.
Heating or conductive metallic yarns and fabrics for energy transfer within flexible structures or composite parts [online]. TIBTECH [accessed 26. 9. 2022]. Available on World Wide Web: < https://www.tibtech.com/>.
Fibers & Yarns [online]. SHIELDEX [accessed 26. 9. 2022]. Available on World Wide Web: < https://www.shieldex.de/en/products_categories/fibres-yarns/>.
E-textiles 2021-2031: technologies, markets, players [online]. IDTechEx [accessed 26. 9. 2022]. Available on World Wide Web: <https://www.idtechex.com/en/research-report/e-textiles-and-smart-clothing-2021-2031-technologies-markets-and-players/828>.
PACELLI, Maria. LORIGA, Giannicola. TACCINI, Nicola, PARADISO, Rita. Sensing fabrics for monitoring physiological and biomechanical variables: e-textile solutions. In Proceedings of the 3rd IEEE-EMBS International Summer School and Symposium on Medical Devices and Biosensors, ISSS-MDBS 2006. IEEE, 2006, 1–4, doi: 10.1109/ISSMDBS.2006.360082. DOI: https://doi.org/10.1109/ISSMDBS.2006.360082
GUO, Li, PETERSON, Joel, QURESHI, Waqas, MEHRJERDI, Adib Kalantar, BERGLIN, Lena, SKRIFVARS, Mikael. Knitted wearable stretch sensor for breathing monitoring application. In Ambience'11, Borås, Sweden, 2011, https://www.diva-portal.org/smash/get/diva2:887398/FULLTEXT01.pdf.
FREIRE, Rachel, HONNET, Cedric, STROHMEIER, Paul. Second skin: an exploration of eTextile stretch circuits on the body. In TEI 2017 - Proceedings of the 11th International Conference on Tangible, Embedded, and Embodied Interaction, 2017, 653–658, doi: 10.1145/3024969.3025054. DOI: https://doi.org/10.1145/3024969.3025054
FAN, W., HE, Q., MENG, K., TAN, X., ZHOU, Z., ZHANG, G., YANG, J., WANG, Z.L. Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Science Advances, 2020, 6(11), 1–10, doi: 10.1126/sciadv.aay2840. DOI: https://doi.org/10.1126/sciadv.aay2840
MEOLI, Dina. Interactive electronic textiles: technologies, applications, opportunities, and market potential: MSc Thesis. Faculty of North Carolina State University, 2002, https://repository.lib.ncsu.edu/handle/1840.16/1216.
GASANA, E., WESTBROEK, P., HAKUZIMANA, J., DE CLERCK, K., PRINIOTAKIS, G., KIEKENS, P., TSELES, D. Electroconductive textile structures through electroless deposition of polypyrrole and copper at polyaramide surfaces. Surface and Coatings Technology, 2006, 201(6), 3547–3551, doi: 10.1016/j.surfcoat.2006.08.128. DOI: https://doi.org/10.1016/j.surfcoat.2006.08.128
HERSH, S.P., MONTGOMERY, D.J. Electrical resistance measurements on fibres and fibre assemblies. Textile Research Journal, 1952, 22(12), 805–818, doi: 10.1177/004051755202201207. DOI: https://doi.org/10.1177/004051755202201207
AZOULAY, J. Anisotropy in electric properties of fabrics containing new conductive fibres. IEEE Transactions on Electrical Insulation, 1988, 23(3), 383–386, doi: 10.1109/14.2378. DOI: https://doi.org/10.1109/14.2378
BERBERI, Pellumb G. A new method for evaluating electrical resistivity of textile assemblies. Textile Research Journal, 1998, 68(6), 407–412, 1998, doi: 10.1177/004051759806800604. DOI: https://doi.org/10.1177/004051759806800604
MEOLI, Dina, MAY-PLUMLEE, Traci. Interactive electronic textile development: a review of technologies. Journal of Textile and Apparel, Technology and Management, 2002, 2(2), 1–12.
TAPPURA, K., NURMI, S. Computational modeling of charge dissipation of fabrics containing conductive fibres. Journal of Electrostatics, 2003, 58(1–2), 117–133, doi: 10.1016/S0304-3886(02)00202-4. DOI: https://doi.org/10.1016/S0304-3886(02)00202-4
KAYNAK, Akif, BELTRAN, Rafael. Effect of synthesis parameters on the electrical conductivity of polypyrrole-coated poly(ethylene terephthalate) fabrics. Polymer International, 2003, 52(6), 1021–1026, doi: 10.1002/pi.1195. DOI: https://doi.org/10.1002/pi.1195
XUE, TAO, X.M. KWOK, Keith W.Y. LEUNG, M.Y., YU, T.X. Electromechanical behavior of fibres coated with an electrically conductive polymer. Textile Research Journal, 2004, 74(10), 929–936, doi: 10.1177/004051750407401013. DOI: https://doi.org/10.1177/004051750407401013
DHAWAN, Anuj, SEYAM, Abdelfattah M., GHOSH, Tushar K., MUTH, John F. Woven fabric-based electrical circuits. Part I: evaluating interconnect methods. Textile Research Journal, 2004, 74(10), 913–919, doi: 10.1177/004051750407401011. DOI: https://doi.org/10.1177/004051750407401011
WU, Jian, ZHOU, Dezhi, TOO, Chee O., WALLACE, Gordon G. Conducting polymer coated lycra. Synthetic Metals, 2005, 155(3), 698–701, doi: 10.1016/j.synthmet.2005.08.032. DOI: https://doi.org/10.1016/j.synthmet.2005.08.032
VARESANO, Alessio, DALL’ACQUA, Lorenzo, TONIN, Claudio. A study on the electrical conductivity decay of polypyrrole coated wool textiles. Polymer Degradation and Stability, 2005, 89(1), 125–132, doi: 10.1016/j.polymdegradstab.2005.01.008. DOI: https://doi.org/10.1016/j.polymdegradstab.2005.01.008
KIM, Bohwon, KONCAR, Vladan, DUFOUR, Claude. Polyaniline-coated PET conductive yarns: study of electrical, mechanical, and electro-mechanical properties. Journal of Applied Polymer Science, 2006, 101(3), 1252–1256, doi: 10.1002/app.22799. DOI: https://doi.org/10.1002/app.22799
WANG, Jiajun, KAYNAK, Akif, WANG, Lijing, LIU, Xin. Thermal conductivity studies on wool fabrics with conductive coatings. Journal of the Textile Institute, 2006, 97(3), 265–270, doi: 10.1533/joti.2005.0298. DOI: https://doi.org/10.1533/joti.2005.0298
ASANOVIC, Koviljka A., MIHAJLIDI, Tatjana A., MILOSAVLJEVIC, Svetlana V., CEROVIC, Dragana D., DOJCILOVIC, Jablan R. Investigation of the electrical behavior of some textile materials. Journal of Electrostatics, 2007, 65(3), 162–167, doi: 10.1016/j.elstat.2006.07.008. DOI: https://doi.org/10.1016/j.elstat.2006.07.008
LOCHER, Ivo, TRÖSTER, Gerhard. Enabling technologies for electrical circuits on a woven monofilament hybrid fabric. Textile Research Journal, 2008, 78(7), 583–594, doi: 10.1177/0040517507081314. DOI: https://doi.org/10.1177/0040517507081314
BANASZCZYK, Jedrzej, ANCA, Anamaria, DE MEY, Gilbert. Infrared thermography of electroconductive woven textiles. Quantitative InfraRed Thermography Journal, 2009, 6(2), 163–173, doi: 10.3166/qirt.6.163-173. DOI: https://doi.org/10.3166/qirt.6.163-173
LATIFI, Masoud, PAYVANDY, Pedram, YOUSEFZADEH-CHIMEH, Maryam. Electro-conductive textile yarns. In Technical Textile Yarn. Edited by R. Alagirusamy and A. Das. Woodhead Publishing, 2010, 298–326, doi: 10.1533/9781845699475.2.298. DOI: https://doi.org/10.1533/9781845699475.2.298
GU, Jian Feng, GORGUTSA, Stephan, SKOROBOGATIY, Maksim. Soft capacitor fibres using conductive polymers for electronic textiles. Smart Materials and Structures, 2010, 19(11), doi: 10.1088/0964-1726/19/11/115006. DOI: https://doi.org/10.1088/0964-1726/19/11/115006
LI, Li, AU, Wai Man, WAN, Kam Man, WAN, Sai Ho, CHUNG, Wai Yee, WONG, Kwok Shing. A resistive network model for conductive knitting stitches. Textile Research Journal, 2010, 80(10), 935–947, doi: 10.1177/0040517509349789. DOI: https://doi.org/10.1177/0040517509349789
DING, Yujie, INVERNALE, Michael A., SOTZING, Gregory A. Conductivity trends of pedot-pss impregnated fabric and the effect of conductivity on electrochromic textile. ACS Applied Materials and Interfaces, 2010, 2(6), 1588–1593, doi: 10.1021/am100036n. DOI: https://doi.org/10.1021/am100036n
KAZANI, I., DE MEY, G., HERTLEER, C., BANASZCZYK, J., SCHWARZ, A., GUXHO, G., VAN LANGENHOVE, L. Van Der Pauw method for measuring resistivities of anisotropic layers printed on textile substrates. Textile Research Journal, 2011, 81(20), 2117–2124, doi: 10.1177/0040517511416280. DOI: https://doi.org/10.1177/0040517511416280
YOON, Boram, LEE, Seungsin. Designing waterproof breathable materials based on electrospun nanofibres and assessing the performance characteristics. Fibres and Polymers, 2011, 12(1), 57–64, doi: 10.1007/s12221-011-0057-9. DOI: https://doi.org/10.1007/s12221-011-0057-9
PETERSEN, Pam, HELMER, Richard, PATE, Margaret, EICHHOFF, Julian. Electronic textile resistor design and fabric resistivity characterization. Textile Research Journal, 2011, 81(13), 1395–1404, doi: 10.1177/0040517511404591. DOI: https://doi.org/10.1177/0040517511404591
KACPRZYK, Ryszard. Measurements of the volume and surface resistance of textile materials. Fibres and Textiles in Eastern Europe, 2011, 84(1), 47–49.
PATEL, Pinal C., VASAVADA, Divyam, MANKODI, Hireni R. Applications of electrically conductive yarns in technical textiles. In 2012 IEEE International Conference on Power System Technology, POWERCON 2012. IEEE, 2012, 1–6, doi: 10.1109/PowerCon.2012.6401374. DOI: https://doi.org/10.1109/PowerCon.2012.6401374
TOKARSKA, Magdalena. Measuring resistance of textile materials based on Van der Pauw method. Indian Journal of Fibre and Textile Research, 2013, 38(2), 198–201.
YEN, Ruey Hor, CHEN, Chien Yu, HUANG, Ching Tang, CHEN, Pei Jing. Numerical study of anisotropic thermal conductivity fabrics with heating elements. International Journal of Numerical Methods for Heat and Fluid Flow, 2013, 23(5), 750–771, doi: 10.1108/HFF-03-2011-0050. DOI: https://doi.org/10.1108/HFF-03-2011-0050
HAMDANI, Syed Talha Ali, POTLURI, Prasad, FERNANDO, Anura. Thermo-mechanical behavior of textile heating fabric based on silver coated polymeric yarn. Materials, 2013, 6(3), 1072–1089, doi: 10.3390/ma6031072. DOI: https://doi.org/10.3390/ma6031072
TOKARSKA, Magdalena. FRYDRYSIAK, Michał, ZIȨBA, Janusz. Electrical properties of flat textile material as inhomegeneous and anisotropic structure. Journal of Materials Science: Materials in Electronics, 2013, 24(12), 5061–5068, doi: 10.1007/s10854-013-1524-4. DOI: https://doi.org/10.1007/s10854-013-1524-4
ODHIAMBO, Sheilla, HERTLEER, Carla, LANGENHOVE, Lieva Van, MEY, Gilbert De, DEFERME, Wim, STRYCKERS, Jeroen. Comparison of commercial brands of PEDOT : PSS in E lectric “Capattery” integrated in textile structure. In Proceedings of the 20th International Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2013. IEEE, 2013, 389–392.
STOPPA, Matteo, CHIOLERIO, Alessandro. Wearable electronics and smart textiles: a critical review. Sensors (Switzerland), 2014, 14(7), 11957–11992, doi: 10.3390/s140711957. DOI: https://doi.org/10.3390/s140711957
WEGENE, Jima Demisie, THANIKAIVELAN, Palanisamy. Conducting leathers for smart product applications. Industrial and Engineering Chemistry Research, 2014, 53(47), 18209–18215, doi: 10.1021/ie503956p. DOI: https://doi.org/10.1021/ie503956p
CAPINERI, Lorenzo. Resistive sensors with smart textiles for wearable technology: from fabrication processes to integration with electronics. Procedia Engineering, 2014, 87, 724–727, doi: 10.1016/j.proeng.2014.11.748. DOI: https://doi.org/10.1016/j.proeng.2014.11.748
TOKARSKA, Magdalena. Determination of fabric surface resistance by van der pauw method in case of contacts distant from the sample edge. Autex Research Journal, 2014, 14(2), 55–60, doi: 10.2478/v10304-012-0050-4. DOI: https://doi.org/10.2478/v10304-012-0050-4
USMA, Clara, KOUZANI, Abbas, CHUA, Julian, AROGBONLO, Adetokunbo, ADAMS, Scott, GIBSON, Ian. Fabrication of force sensor circuits on wearable conductive textiles. Procedia Technology, 2015, 20, 263–269, doi: 10.1016/j.protcy.2015.07.042. DOI: https://doi.org/10.1016/j.protcy.2015.07.042
QUINTERO, A.V., CAMARA, M., MATTANA, G., GASCHLER, W., CHABRECEK, P., BRIAND, D., DE ROOIJ, N. F. Capacitive strain sensors inkjet-printed on PET fibres for integration in industrial textile. Procedia Engineering, 2015, 120, 279–282, doi: 10.1016/j.proeng.2015.08.613. DOI: https://doi.org/10.1016/j.proeng.2015.08.613
AROGBONLO, Adetokunbo, USMA, Clara, KOUZANI, Abbas, GIBSON, Ian. Design and fabrication of a capacitance based wearable pressure sensor using E-textiles. Procedia Technology, 2015, 20, 270–275, doi: 10.1016/j.protcy.2015.07.043. DOI: https://doi.org/10.1016/j.protcy.2015.07.043
FELCZAK, Mariusz, DE MEY, Gilbert, WIĘCEK, Bogusław, MICHALAK, Marina. Lateral and perpendicular thermal conductivity measurement on textile double layers. Fibres and Textiles in Eastern Europe, 2015, 23(4), 61–65.
LIPOL, Lefayet Sultan, ISLAM, Mayedul, SULTANA, Nazrima. The resistance measurement method of the conducting textiles. European Scientific Journal, ESJ, 2016, 12(27), 242–249, doi: 10.19044/esj.2016.v12n27p242. DOI: https://doi.org/10.19044/esj.2016.v12n27p242
KARIM, N., AFROJ, S., TAN, S., HE, P., FERNANDO, A., CARR, C., NOVOSELOV, K.S. Scalable production of graphene-based wearable e-textiles. ACS Nano, 12017, 1(12), 12266–12275, doi: 10.1021/acsnano.7b05921. DOI: https://doi.org/10.1021/acsnano.7b05921
BAHADIR, Senem Kursun, SAHIN, Umut Kivanc, KIRAZ, Alper. Modeling of surface temperature distributions on powered e-textile structures using an artificial neural network. Textile Research Journal, 2019, 89(3), 311–321, doi: 10.1177/0040517517743689. DOI: https://doi.org/10.1177/0040517517743689
RYAN, Jason D, MENGISTIE, Desalegn Alemu, GABRIELSSON, Roger, LUND, Anja, MÜLLER, Christian. Machine-washable PEDOT:PSS dyed silk yarns for electronic textiles. ACS Applied Materials and Interfaces, 2017, 9(10), 9045–9050, doi: 10.1021/acsami.7b00530. DOI: https://doi.org/10.1021/acsami.7b00530
ALHASHMI ALAMER, Fahad. A simple method for fabricating highly electrically conductive cotton fabric without metals or nanoparticles, using PEDOT:PSS. Journal of Alloys and Compounds, 2017, 702, 266–273, doi: 10.1016/j.jallcom.2017.01.001. DOI: https://doi.org/10.1016/j.jallcom.2017.01.001
NURAMDHANI, Ida, GOKCEOREN, Argun Talat, ODHIAMBO, Sheilla Atieno, De MEY, Gilbert D, HERTLEER, Carla, van LANGENHOVE, Lieva. Electrochemical impedance analysis of a PEDOT: PSS-based textile energy storage device. Materials, 2018, 11(1), 1–11, doi: 10.3390/ma11010048. DOI: https://doi.org/10.3390/ma11010048
VILLANUEVA, Rolando, GANTA, Deepak, GUZMAN, Carlos. Mechanical, in-situ electrical and thermal properties of wearable conductive textile yarn coated with polypyrrole/carbon black composite. Materials Research Express, 2019, 6(1), 1-9, doi: 10.1088/2053-1591/aae607. DOI: https://doi.org/10.1088/2053-1591/aae607
LUND, Anja,. VAN DER VELDEN, Natascha M., PERSSON, Nils Krister, HAMEDI, Mahiar M., MÜLLER, Christian. Electrically conducting fibres for e-textiles: an open playground for conjugated polymers and carbon nanomaterials. Materials Science and Engineering R: Reports, 2018, 126, 1–29, doi: 10.1016/j.mser.2018.03.001. DOI: https://doi.org/10.1016/j.mser.2018.03.001
LEE, J.S., JO, H., CHOE, H.S., LEE, D.S., JEONG, H., LEE, H.R., KWEON, J.-H., LEE, H., MYONG, R.S.,, NAM, Y. Electro-thermal heating element with a nickel-plated carbon fabric for the leading edge of a wing-shaped composite application. Composite Structures, 2022, 289, 1–12, doi: 10.1016/j.compstruct.2022.115510. DOI: https://doi.org/10.1016/j.compstruct.2022.115510
CHATTERJEE, Kony. TABOR, Jordan, GHOSH, Tushar K. Electrically conductive coatings for fibre-based E-Textiles. Fibres, 2019, 7(6), 1–45, doi: 10.3390/fib7060051. DOI: https://doi.org/10.3390/fib7060051
MOHAMED, Aliaa Abdel Aziz, EZZAT, Mohamed M., MEGEID, Zaynab M. Abdel, SAEED, Ahmed, ABDEL-HAMED, Hebatullah A.A., EL-OKDA, Enas A.H. Suitability of conductive knit fabric for sensing human breathing. Journal of Textile and Apparel, Technology and Management, 11(1), 1–7, 2019, doi: 10.21608/jsrs.2016.15319. DOI: https://doi.org/10.21608/jsrs.2016.15319
SHABANI, Aulon. HYLLI, Majlinda. KAZANI, Ilda, BERBERI, Pellumb. Resistivity behavior of leather after electro-conductive treatment. Textile & Leather Review, 2019, 2(1), 15–22, doi: 10.31881/tlr.2019.15. DOI: https://doi.org/10.31881/TLR.2019.15
SHABANI, Aulon. HYLLI, Majlinda. KAZANI, Ilda. BERBERI, Pellumb. ZAVALANI, Orion, GUXHO, Genti. The anisotropic structure of electro conductive leather studied by Van der Pauw method. Textile & Leather Review, 2019, 2(3), 136–144, doi: 10.31881/tlr.2019.16. DOI: https://doi.org/10.31881/TLR.2019.16
AKBARPOUR, Hamed, RASHIDI, Alimorad, MIRJALILI, Mostafa, NAZARI, Ali. Comparison of the conductive properties of polyester/viscose fabric treated with Cu nanoparticle and MWCNTs. Journal of Nanostructure in Chemistry, 2019, 9(4), 335–348, doi: 10.1007/s40097-019-00322-z. DOI: https://doi.org/10.1007/s40097-019-00322-z
HARDIANTO, Hardianto, MALENGIER, Benny, DE MEY, Gilbert, VAN LANGENHOVE, Lieva, HERTLEER, Carla. Textile yarn thermocouples for use in fabrics. Journal of Engineered Fibres and Fabrics, 2019, 14, doi: 10.1177/1558925019836092. DOI: https://doi.org/10.1177/1558925019836092
KAMYSHNY, Alexander, MAGDASSI, Shlomo. Conductive nanomaterials for 2D and 3D printed flexible electronics. Chemical Society Reviews, 2019, 48(6), 1712–1740, doi: 10.1039/c8cs00738a. DOI: https://doi.org/10.1039/C8CS00738A
NURAMDHANI, Ida, MANOJ, Jose, SAMYN, Pieter, ADRIAENSENS, Peter, MALENGIER, Benny, DEFERME, Wim, DE MEY, Gilbert, VAN LANGENHOVE, Lieva. Charge-discharge characteristics of textile energy storage devices having different PEDOT:PSS ratios and conductive yarns configuration. Polymers, 2019, 11(2), 1–17, doi: 10.3390/polym11020345. DOI: https://doi.org/10.3390/polym11020345
LUND, Anja, TIAN, Yuan, DARABI, Sozan, MÜLLER, Christian. A polymer-based textile thermoelectric generator for wearable energy harvesting. Journal of Power Sources, 2020, 480, 1–11, doi: 10.1016/j.jpowsour.2020.228836. DOI: https://doi.org/10.1016/j.jpowsour.2020.228836
AFROJ, Shaila, TAN, Sirui, ABDELKADER, Amr M., NOVOSELOV, Kostya S., KARIM, Nazmul. Highly conductive, scalable, and machine washable graphene-based e-textiles for multifunctional wearable electronic applications. Advanced Functional Materials, 2020, 30(23), 1–10, doi: 10.1002/adfm.202000293. DOI: https://doi.org/10.1002/adfm.202000293
TSEGHAI, Granch Berhe, MENGISTIE, Desalegn Alemu, MALENGIER, Benny, FANTE, Kinde Anlay, VAN LANGENHOVE, Lieva. PEDOT:PSS-based conductive textiles and their applications. Sensors (Switzerland), 2020, 20(7), 1–18, doi: 10.3390/s20071881. DOI: https://doi.org/10.3390/s20071881
HYLLI, Majlinda, SHABANI, Aulon, KAZANI, Ilda, DRUSHKU, Spiro, GUXHO, Genti. The color fastness properties of conductive leather improved by the use of mordants. IOP Conference Series: Materials Science and Engineering, 2020, 827(1), 1–6, doi: 10.1088/1757-899X/827/1/012036. DOI: https://doi.org/10.1088/1757-899X/827/1/012036
KRIFA, Mourad. Electrically conductive textile materials – application in flexible sensors and antennas. Textiles, 2021, 1(2), 239–257, doi: 10.3390/textiles1020012. DOI: https://doi.org/10.3390/textiles1020012
ANGELUCCI, A., CAVICCHIOLI, M., CINTORRINO, I. A., LAURICELLA, G., ROSSI, C., STRATI, S., ALIVERTI, A. Smart textiles and sensorized garments for physiological monitoring: a review of available solutions and techniques. Sensors (Switzerland), 2021, 21(3), 1–23, doi: 10.3390/s21030814. DOI: https://doi.org/10.3390/s21030814
JIN, In Su, LEE, Jea Uk, JUNG, Jae Woong. A facile solution engineering of PEDOT: PSS-coated conductive textiles for wearable heater applications, Polymers, 2021, 13(6), 1–10, doi: 10.3390/polym13060945. DOI: https://doi.org/10.3390/polym13060945
SHAKERI SIAVASHANI, Vahid, NEVIN, Gursoy, MONTAZER, Majid, ALTAY, Pelin. Highly stretchable conductive fabric using knitted cotton/lycra treated with polypyrrole/silver NPs composites post-treated with PEDOT:PSS. Journal of Industrial Textiles, 2022, 51(3 suppl.), 4571S-4588S, doi: 10.1177/15280837211059212. DOI: https://doi.org/10.1177/15280837211059212
ROGALE, Snježana Firšt, ROGALE, Dubravko, KNEZI, Željko. Measurement method for the simultaneous determination of thermal resistance and temperature gradients in the determination of thermal properties of textile material layers. Materials, 2021, 14(22), 1-20, doi: 10.3390/ma14226853. DOI: https://doi.org/10.3390/ma14226853
KAYNAK, Akif, ZOLFAGHARIAN, Ali, FEATHERBY, Toby, BODAGHI, Mahdi, PARVEZ MAHMUD, M.A., KOUZANI, Abbas Z. Electrothermal modeling and analysis of polypyrrole-coated wearable e-textiles. Materials, 14(3), 1–16, 2021, doi: 10.3390/ma14030550. DOI: https://doi.org/10.3390/ma14030550
ADAK, Bapan. Utilization of nanomaterials in conductive smart- textiles: a review. Journal of Textile Science & Fashion Technology, 2021, 8(1), 14–16, doi: 10.33552/jtsft.2021.08.000678. DOI: https://doi.org/10.33552/JTSFT.2021.08.000678
WANG, Peng, WANG, Yong, XU, Qingbo, CHEN, Qian, ZHANG, Yan Yan, XU, Zhenzhen. Fabrication of durable and conductive cotton fabric using silver nanoparticles and PEDOT:PSS through mist polymerization. Applied Surface Science, 2022, 592, 1–9, doi: 10.1016/j.apsusc.2022.153314. DOI: https://doi.org/10.1016/j.apsusc.2022.153314
LUO, Yuzi, CHO, Gilsoo. Fabrication of electroconductive textiles based polyamide/polyurethan knitted fabric coated with PEDOT:PSS/non-oxidized graphene. Fashion & Textile Research Journal, 2022, 24(1), 146–155, doi: 10.5805/SFTI.2022.24.1.146. DOI: https://doi.org/10.5805/SFTI.2022.24.1.146
PENAVA, Željko, PENAVA, Diana Šimić, KNEZIĆ, Željko. Heat as a conductivity factor of electrically conductive yarns woven into fabric. Materials, 2022, 15(3), 1–18, doi: 10.3390/ma15031202. DOI: https://doi.org/10.3390/ma15031202
REPON, Md Reazuddin, LAURECKIENE, Ginta, MIKUCIONIENE, Daiva. Effect of stretching on thermal behaviour of electro-conductive weft-knitted composite fabrics. Polymers, 2022, 14(2), 1–23, doi: 10.3390/polym14020249. DOI: https://doi.org/10.3390/polym14020249
ALAMER, Fahad Alhashmi, BEYARI, Rawan F. Overview of the influence of silver, gold, and titanium nanoparticles on the physical properties of PEDOT:PSS-coated cotton fabrics. Nanomaterials, 2022, 12(9), 1–21, doi: 10.3390/nano12091609. DOI: https://doi.org/10.3390/nano12091609
KALAOGLU-ALTAN, Ozlem Ipek, KAYAOGLU, Burcak Karaguzel, TRABZON, Levent. Improving thermal conductivities of textile materials by nanohybrid approaches. iScience, 2022, 25(3), 1–24, doi: 10.1016/j.isci.2022.103825. DOI: https://doi.org/10.1016/j.isci.2022.103825
TOKARSKA, Magdalena. A mixing model for describing electrical conductivity of a woven structure. Materials, 2022, 15(7), 1–14, doi: 10.3390/ma15072512. DOI: https://doi.org/10.3390/ma15072512
ABOU TALEB, Marwa, MOWAFI, Salwa, EL-SAYED, Hosam, EL-NEWASHY, Rania. Facile development of electrically conductive comfortable fabrics using metal ions. Journal of Industrial Textiles, 2022, 51(7), 1100–1120, doi: 10.1177/1528083719893713. DOI: https://doi.org/10.1177/1528083719893713
UZUN, Muhammet, SANCAK, Erhan, USTA, Ismail. The use of conductive wires for smart and protective textiles. In 2015 E-Health and Bioengineering Conference, EHB 2015. IEEE, 2015, 1–4, doi: 10.1109/EHB.2015.7391494. DOI: https://doi.org/10.1109/EHB.2015.7391494
AVLONI, Jamshid, LAU, Rosa, OUYANG, Meng, FLORIO, Luca, HENN, Arthur R., SPARAVIGNA, Amelia. Polypyrrole coated nonwovens for electromagnetic shielding. Journal of Industrial Textiles, 2008, 38(1), 55–68, doi: 10.1177/1528083707087834. DOI: https://doi.org/10.1177/1528083707087834
FERRERO, Franco, NAPOLI, Liuba, TONIN, Claudio, VARESANO, Alessio. Pyrrole chemical polymerization on textiles: Kinetics and operating conditions. Journal of Applied Polymer Science, 2006, 102(5), 4121–4126, doi: 10.1002/app.24149. DOI: https://doi.org/10.1002/app.24149
BHAT, Narendra V., SESHADRI, Devender T., NATE, Mandar M., GORE, Ajit V. Development of conductive cotton fabrics for heating devices. Journal of Applied Polymer Science, 2006, 102(5), 4690–4695, doi: 10.1002/app.24708. DOI: https://doi.org/10.1002/app.24708
KAYNAK, Akif, WANG, Lijing, HURREN, Chris, WANG, Xungai. Characterization of conductive polypyrrole coated wool yarns. Fibres and Polymers, 2002, 3(1), 24–30, doi: 10.1007/BF02875365. DOI: https://doi.org/10.1007/BF02875365
SEUNG LEE, Han, HONG, Juan. Chemical synthesis and characterization of polypyrrole coated on porous membranes and its electrochemical stability. Synthetic Metals, 2000, 113(1–2), 115–119, doi: 10.1016/S0379-6779(00)00193-4. DOI: https://doi.org/10.1016/S0379-6779(00)00193-4
KINCAL, Dilek, KUMAR, Anil, CHILD, Andrew D., REYNOLDS, John R. Conductivity switching in polypyrrole-coated textile fabrics as gas sensors. Synthetic Metals, 1998, 92(1), 53–56, doi: 10.1016/s0379-6779(98)80022-2. DOI: https://doi.org/10.1016/S0379-6779(98)80022-2
LEKPITTAYA, Porntip, YANUMET, Nantaya, GRADY, Brian P., REAR, Edgar A.O. Resistivity of conductive polymer – coated fabric. Applied Polymer, 2003, 92(4), 2629–2636, doi: 10.1002/app.20270. DOI: https://doi.org/10.1002/app.20270
KIM, Bohwon, KONCAR, Vladan, DEVAUX, Eric, DUFOUR, Claude, VIALLIER, Pierre. Electrical and morphological properties of PP and PET conductive polymer fibres. Synthetic Metals, 2004, 146(2), 167–174, doi: 10.1016/j.synthmet.2004.06.023. DOI: https://doi.org/10.1016/j.synthmet.2004.06.023
OH, Kyung Wha, KIM, Seong Hun, KIM, Eun Ae. Improved surface characteristics and the conductivity of polyaniline-nylon 6 fabrics by plasma treatment. Journal of Applied Polymer Science, 2001, 81(3), 684–694, doi: 10.1002/app.1485. DOI: https://doi.org/10.1002/app.1485
SCHOLZ, Jana, NOCKE, Günter, HOLLSTEIN, Frank, WEISSBACH, Alexander. Investigations on fabrics coated with precious metals using the magnetron sputter technique with regard to their anti-microbial properties. Surface and Coatings Technology, 2005, 192(2–3), 252–256, doi: 10.1016/j.surfcoat.2004.05.036. DOI: https://doi.org/10.1016/j.surfcoat.2004.05.036
KUMAR, Satish, DOSHI, Harit, SRINIVASARAO, Mohan. PARK, Jung O., SCHIRALDI, David A. Fibres from polypropylene/nano carbon fibre composites. Polymer, 2002, 43(5), 1701–1703, doi: 10.1016/S0032-3861(01)00744-3. DOI: https://doi.org/10.1016/S0032-3861(01)00744-3
ISLAM, G. M.Nazmul, ALI, M. Azam, COLLIE, Stewart. Polydopamine treated and PEDOT:PSS coated wash durable conductive textiles for wearable applications. Fibres and Polymers, 2022, 23(4), 914–924, doi: 10.1007/s12221-022-3080-0. DOI: https://doi.org/10.1007/s12221-022-3080-0
SHATERI-KHALILABAD, Mohammad, YAZDANSHENAS, Mohammad E. Fabricating electroconductive cotton textiles using graphene. Carbohydrate Polymers, 2013, 96(1), 190–195, doi: 10.1016/j.carbpol.2013.03.052. DOI: https://doi.org/10.1016/j.carbpol.2013.03.052
MAKOWSKI, T., SVYNTKIVSKA, M., PIORKOWSKA, E., MIZERSKA, U., FORTUNIAK, W., KOWALCZYK, D., BRZEZINSKI, S., KREGIEL, D. Antibacterial electroconductive composite coating of cotton fabric. Materials, 2022, 15(3), 1–9, doi: 10.3390/ma15031072. DOI: https://doi.org/10.3390/ma15031072
BLACHOWICZ, Tomasz, EHRMANN, Andrea. Conductive electrospun nanofibre mats, Materials, 2020, 13(1), 1–17, doi: 10.3390/ma13010152. DOI: https://doi.org/10.3390/ma13010152
YEO, Leslie Y., FRIEND, James R. Electrospinning carbon nanotube polymer composite nanofibres. Journal of Experimental Nanoscience, 2006, 1(2), 177–209, doi: 10.1080/17458080600670015. DOI: https://doi.org/10.1080/17458080600670015
GOMMANS, Hans H., ALLDREDGE, Jacob W., TASHIRO, Hideo, PARK, Jin, MAGNUSON, John, RINZLER, Andrew G. Fibres of aligned single-walled carbon nanotubes: polarized raman spectroscopy. Journal of Applied Physics, 2000, 88(5), 2509–2514, doi: 10.1063/1.1287128. DOI: https://doi.org/10.1063/1.1287128
VIGOLO, B., PENICAUD, A., COULON, C., SAUDER, C., PAILLER, R., JOURNET, C., BERNIER, P., POULIN, P. Macroscopic fibres and ribbons of oriented carbon nanotubes. Science, 2000, 290(5495), 1331–1334, doi: 10.1126/science.290.5495.1331. DOI: https://doi.org/10.1126/science.290.5495.1331
JESTIN, Simon, POULIN, Philippe. Wet spinning of CNT-based fibres. In Nanotube superfiber materials. Edited by Mark J. Schulz, Vesselin N. Shanov and Zhangzhang Yin. Elsevier, 2013, 167–209, doi: 10.1016/B978-1-4557-7863-8.00006-2. DOI: https://doi.org/10.1016/B978-1-4557-7863-8.00006-2
HAGGENMUELLER, Reto, GOMMANS, Hans H., RINZLER, Andrew G., FISCHER, John E., WINEY, Karen I. Aligned single-wall carbon nanotubes in composites by melt processing methods. Chemical Physics Letters, 2000, 330(3–4), 219–225, doi: 10.1016/S0009-2614(00)01013-7. DOI: https://doi.org/10.1016/S0009-2614(00)01013-7
KHAIR, Nipa. ISLAM, Rashedul, SHAHARIAR, Hasan. Carbon-based electronic textiles: materials, fabrication processes and applications. Journal of Materials Science, 2019, 54(14), 10079–10101, doi: 10.1007/s10853-019-03464-1. DOI: https://doi.org/10.1007/s10853-019-03464-1
GÜLTEKİN, N. D., USTA, İsmail. Investigation of thermal and electrical conductivity properties of carbon black coated cotton fabrics. Marmara University Journal of Science, 2015, 27(SI), 91–94, doi: 10.7240/mufbed.67752. DOI: https://doi.org/10.7240/mufbed.67752
HASSAN, B.S., ISLAM, G.M.N., HAQUE, A.N.M.A. Applications of nanotechnology in textiles : a review. Advanced Research in Textile Engineering, 2019, 4(2), 1–9.
SABOOR, Fahimeh Hooriabad, HADIAN-GAZVINI, Samaneh, SHAHSAVARI, Shadab. Applications of carbon-based conductive nanomaterials on e-textiles. In Nanosensors and nanodevices for smart multifunctional textiles. Edited by Andrea Ehrmann, Tuan Anh Nguyen and Phuong Nguyen. Elsevier, 2020, 245–165, doi: 10.1016/B978-0-12-820777-2.00015-7. DOI: https://doi.org/10.1016/B978-0-12-820777-2.00015-7
SHIN, Dong Youn, LEE, Yongshik, KIM, Chung Hwan. Performance characterization of screen printed radio frequency identification antennas with silver nanopaste. Thin Solid Films, 2009, 517(21), 6112–6118, doi: 10.1016/j.tsf.2009.05.019. DOI: https://doi.org/10.1016/j.tsf.2009.05.019
van der PAUW, L.J. A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Research Reports, 1958, 13(1), 1–9.
ŠAFÁŘOVÁ, Veronika, MILITKÝ, Jiří. A study of electrical conductivity of hybrid yarns containing metal fibres. Journal of Materials Science and Engineering B, 2012, 2(2), 109–114.
AUSSERLECHNER, Udo. Closed form expressions for sheet resistance and mobility from Van-der-Pauw measurement on 90° symmetric devices with four arbitrary contacts. Solid-State Electronics, 2016, 116, 46–55, doi: 10.1016/j.sse.2015.11.030. DOI: https://doi.org/10.1016/j.sse.2015.11.030
RAMADAN, Ahmed A., GOULD, Robert D., ASHOUR, Ahmed. On the Van der Pauw method of resistivity measurements. Thin Solid Films, 1994, 239(2), 272–275, doi: 10.1016/0040-6090(94)90863-X. DOI: https://doi.org/10.1016/0040-6090(94)90863-X
RÄTHEL, Jan. HERRMANN, Mathias, BECKERT, Wieland. Temperature distribution for electrically conductive and non-conductive materials during Field Assisted Sintering (FAST). Journal of the European Ceramic Society, 2009, 29(8), 1419–1425, doi: 10.1016/j.jeurceramsoc.2008.09.015. DOI: https://doi.org/10.1016/j.jeurceramsoc.2008.09.015
REINERS, Priscilla, KYOSEV, Yordan, SCHACHER, Laurence, ADOLPHE, Dominique. About the cutting resistance measurement of textiles. In XIIIth International Izmir Textile and Apparel Symposium, April 2-5 2014, 447–452.
PAWLAK, Ryszard, LEBIODA, Marcin, MARIUSZ, Tomczyk, RYMASZEWSKI, Jacek, KORZENIEWSKA, Ewa, WALCZAK, Maria. Surface heat sources on textile composites - Modeling and implementation. In 2017 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering, ISEF 2017. IEEE, 2017, 1–2, doi: 10.1109/ISEF.2017.8090740. DOI: https://doi.org/10.1109/ISEF.2017.8090740
KHAN, Saleem, TINKU, Sajina, LORENZELLI, Leandro, DAHIYA, Ravinder S. Flexible tactile sensors using screen-printed P(VDF-TrFE) and MWCNT/PDMS composites. IEEE Sensors Journal, 2015, 15(6), 3146–3155, doi: 10.1109/JSEN.2014.2368989. DOI: https://doi.org/10.1109/JSEN.2014.2368989
LEE, J., KWON, H., SEO, J., SHIN, S., KOO, J.H., PANG, C., SON, S., KIM, J.H., JANG, Y.H., KIM, D.E., LEE, T. Conductive fibre-based ultrasensitive textile pressure sensor for wearable electronics. Advanced Materials, 2015, 27(15), 2433–2439, doi: 10.1002/adma.201500009. DOI: https://doi.org/10.1002/adma.201500009
ROOT, Waleri, BECHTOLD, Thomas, PHAM, Tung. Textile-Integrated thermocouples for temperature measurement. Materials, 2020, 13(3), 1–22, doi: 10.3390/ma13030626. DOI: https://doi.org/10.3390/ma13030626
ARRUDA, Luisa M., MOREIRA, Inês SANIVADA, Usha Kiran, CARVALHO, Helder, FANGUEIRO, Raul. Development of piezoresistive sensors based on graphene nanoplatelets screen-printed on woven and knitted fabrics: optimisation of active layer formulation and transversal/longitudinal textile direction. Materials, 2022, 15(15), 1–25, doi: 10.3390/ma15155185. DOI: https://doi.org/10.3390/ma15155185
CHO, Seungse, CHANG, Taehoo, YU, Tianhao, LEE, Chi Hwan. Smart electronic textiles for wearable sensing and display. Biosensors, 2022, 12(4), 1–30, doi: 10.3390/bios12040222. DOI: https://doi.org/10.3390/bios12040222
SINHA, Ankita, DHANJAI. STAVRAKIS, Adrian K., STOJANOVIĆ, Goran M. Textile-based electrochemical sensors and their applications. Talanta, 2022, 244, 2022, 1–16, doi: 10.1016/j.talanta.2022.123425. DOI: https://doi.org/10.1016/j.talanta.2022.123425
HUGHES-RILEY, Theodore, DIAS, Tilak, CORK, Colin. A historical review of the development of electronic textiles. Fibres, 2018, 6(2), 1–15, doi: 10.3390/fib6020034. DOI: https://doi.org/10.3390/fib6020034
PEI, Eujin, SHEN, Jinsong, WATLING, Jennifer. Direct 3D printing of polymers onto textiles: experimental studies and applications. Rapid Prototyping Journal, 2015, 21(5), 556–571, doi: 10.1108/RPJ-09-2014-0126. DOI: https://doi.org/10.1108/RPJ-09-2014-0126
MELLIN, P., JÖNSSON, C., ÅKERMO, M., FERNBERG, P., NORDENBERG, E., BRODIN, H., STRONDL, A. Nano-sized by-products from metal 3D printing, composite manufacturing and fabric production. Journal of Cleaner Production, 2016, 139, 1224–1233, doi: 10.1016/j.jclepro.2016.08.141. DOI: https://doi.org/10.1016/j.jclepro.2016.08.141
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Tekstilec
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.