Time-Dependence of Stop Marks in Warp-Knitted Fabrics


  • Christian Hellert Bielefeld University of Applied Sciences, Faculty of Engineering and Mathematics, 33619 Bielefeld, Germany
  • Michael Kieren Karl Mayer Stoll R&D GmbH, 63179 Obertshausen, Germany
  • Andrea Ehrmann Bielefeld University of Applied Sciences, Faculty of Engineering and Mathematics, 33619 Bielefeld, Germany https://orcid.org/0000-0003-0695-3905




stop marks, warp knitting, microscopy, image evaluation


Stop marks are one of the most frequently occurring errors in warp-knitted fabrics. They become visible in a fabric each time a warp-knitting machine stops and restarts. Nevertheless, investigations of such stop marks are rarely found in scientific literature. Here, we report on time-dependent investigations of stop marks in warp-knitted fabrics. Microscopic examination of stop marks after stopping times ranging between 1 s and 7 weeks revealed a superposition of the common stop mark due to imperfectly matching rotational speeds of the warp beam and main shaft, and an additional effect due to relaxation in the machine.


HANBAY Kazim, TALU, Muhammed Fatih, ÖZGÜVEN, Ömer Faruk. Fabric defect detection systems and methods – a systematic literature review. Optik, 2016, 127(24), 11960–11973, doi: 10.1016/j.ijleo.2016.09.110. DOI: https://doi.org/10.1016/j.ijleo.2016.09.110

NGAN, Henry Y. T., PANG, Grantham K. H., YUNG, Nelson H. C. Automated fabric defect detection – a review. Image and Vision Computing, 2011, 29(7), 442–458, doi: 10.1016/j.imavis.2011.02.002. DOI: https://doi.org/10.1016/j.imavis.2011.02.002

RASHEED, Aqsa, ZAFAR, Bushra, RASHEED, Amina, ALI, Nouman, SAJID, Muhammad, DAR, Saadat Hanif, HABIB, Usman, SHEHRYAR, Tehmina, MAHMOOD, Muhammad Tariq. Fabric defect detection using computer vision techniques: a comprehensive review. Mathematical Problems in Engineering, 2020, 2020, 8189403, 1–24, doi: 10.1155/2020/8189403. DOI: https://doi.org/10.1155/2020/8189403

LI, Chao, LI, Jun, LI, Yafei, HE, Lingmin, FU, Xiaokang, CHEN, Jingjing. Fabric defect detection in textile manufacturing: a survey of the state of the art. Security and Communication Networks, 2021, 2021, 9948808, doi: 10.1155/2021/9948808. DOI: https://doi.org/10.1155/2021/9948808

WIMALAWEERA, W. A., LAN, Tang Yee. A study of start-up marks of woven fabrics. Research Journal of Textile and Apparel, 1997, 1(1), 71–83, doi: 10.1108/RJTA-01-01-1997-B009. DOI: https://doi.org/10.1108/RJTA-01-01-1997-B009

KARASAN, Ali, ERDOGAN, Melike. Creating proactive behavior for the risk assessment by considering expert evaluation: a case of textile manufacturing plant. Complex & Intelligent Systems, 2021, 7(2), 941–959, doi: 10.1007/s40747-020-00246-0 DOI: https://doi.org/10.1007/s40747-020-00246-0

PATIL, Tushar, CHAUDHARI, Bhushan, PATALE, Yatin, SHINDE, Tushar, PARSI, Rajendra, GULHANE, Sujit, RAICHURKAR, P. P. Development of techno-feasible mobile app for process optimization in textile industry. In Advances in Systems Engineering. Lecture Notes in Mechanical Engineering. Edited by V. H. Saran and R.K. Misra. Singapore : Springer, 2021, doi: 10.1007/978-981-15-8025-3_28. DOI: https://doi.org/10.1007/978-981-15-8025-3_28

AHMED, Suza, ALIMUZZAMAN, Sha, HAQUE, A. K. M. Monjurul. Effect of shed geometry on starting mark of woven fabric. SN Applied Sciences, 2020, 2(4), 1–15, doi: 10.1007/s42452-020-2384-1. DOI: https://doi.org/10.1007/s42452-020-2384-1

AYALA, Andres Leal, GOVINDARAJ, Muthu. Detecting and quantifying set marks on woven fabrics. Textile Research Journal, 2001, 71(7), 587–595, doi: 10.1177/004051750107100704. DOI: https://doi.org/10.1177/004051750107100704

MIHRIBAN, Kalkanci. Qualitative classification of woven fabrics produced from recycles threads of cotton and blends. Industria Textila, 2020, 71(2), 118–123, doi: 10.35530/IT.071.02.1638. DOI: https://doi.org/10.35530/IT.071.02.1638

VEIT, Dieter. Neural networks in textile engineering. In Advances in Modeling and Simulation in Textile Engineering. Edited by Nicholus Tayari Akankwasa and Dieter Veit. The Textile Institute Book Series. Woodhead Publishing, 2021, 39–98, doi: 10.1016/B978-0-12-822977-4.00017-0. DOI: https://doi.org/10.1016/B978-0-12-822977-4.00017-0

AU, K. F. Quality control in the knitting process and common knitting faults.In Advances in Knitting Technology. Edited by K.F. Au. Woodhead Publishing Series in Textiles. Woodhead Publishing, 2011, 213–232, doi: 10.1533/9780857090621.2.213. DOI: https://doi.org/10.1533/9780857090621.2.213

WIJESINGHA, Dimuthu, JAYASEKARA, Buddhika. Detection of defects on warp-knit fabric surfaces using self organizing map. In 2018 Moratuwa Engineering Research Conference (MERCon). IEEE, 2018, pp. 601–606. DOI: https://doi.org/10.1109/MERCon.2018.8421944

ORCHARD, G. A. J., BARKER, R. A. Application of high-speed photography to textile problems. The Journal of Phtoographic Science, 1957, 5(5), 126–131, doi: 10.1080/00223638.1957.11736608. DOI: https://doi.org/10.1080/00223638.1957.11736608

NEUMANN, Florian, STRAUF AMABILE, Marion, GRIES, Thomas, ZEIDLER, Gert, KLEMM, Brigitte, HEINECKE, Thomas. Characteristics of stop marks in warp-knitted fabrics. Proceedings of the 2nd Aachen-Dresden International Textile Conference, Dresden, December 04 - 05, 2008. Edited by Annett Dörfel. Dresden : ITB, TU, 2008.

STRAUF AMABILE, Marion, GRIES, Thomas. Examination of stop marks: looking for the ‘bad parkers’ in the fabric; a new testing instrument for examining stop marks. Kettenwirk-Praxis, 2005, 39(4), 28–29.

KALLIVRETAKI, Argyro, VASSILIADIS, Savvas, BLAGA, Mirela, PROVATIDIS, Christopher. Finite element modelling of the warp knitted structure. RJTA, 2007, 11(4), 40–47, doi: 10.1108/RJTA-11-04-2007-B003. DOI: https://doi.org/10.1108/RJTA-11-04-2007-B003

ZHANG, Yuan, HU, Hong, KYOSEV, Yordan, LIU, Yanping. Finite element modeling of 3D spacer fabric: Effect of the geometric variation and amount of spacer yarns. Composite Structures, 2020, 236, 111846, doi: 10.1016/j.compstruct.2019.111846. DOI: https://doi.org/10.1016/j.compstruct.2019.111846

ETTEHADI, Zahra, AJELI, Saeed, SOLTANI, Parham, ZARREBINI, Mohammad. Experimental and CFD analysis of air permeability of warp-knitted structures. Fibers and Polymers, 2020, 21(6), 1362–1371, doi: 10.1007/s12221-020-9258-4. DOI: https://doi.org/10.1007/s12221-020-9258-4




How to Cite

Hellert, C., Kieren, M., & Ehrmann, A. (2022). Time-Dependence of Stop Marks in Warp-Knitted Fabrics. Tekstilec, 65(2), 84–90. https://doi.org/10.14502/tekstilec.65.2022001



Scientific article

Most read articles by the same author(s)