Assessment of Changes in Corn Husk Fibres after Acid Treatment

Authors

  • Pragati Bajpai Uttar Pradesh Textile Technology Institute, Kanpur, 208001, India Author
  • Utpal Jana Indian Institute of Handloom Technology, Salem, Tamil Nadu, 636001, India Author
  • Saminathan Ratnapandian Kumaraguru College of Technology, Department of Textile Technology, Coimbatore, 641049, India Author https://orcid.org/0000-0003-2905-2333

DOI:

https://doi.org/10.14502/tekstilec.65.2021061

Keywords:

acid treatment, alkali digestion, corn husk, hemicelluloses, lignin, thermogravimetry, TGA

Abstract

Sustainability is desirable in any activity, including farming. Adding value to agricultural wastes such as stover (waste from corn cultivation) would provide financial benefits to farmers while reducing the environmental load of disposal. The literature identifies stover as being a raw material for bio-ethanol and a reinforcement for composites. Fibre from corn husks is generally extracted using an alkali digestion method followed optionally by enzymatic degradation. In this study, acid treatment was investigated for its feasibility to improve the desirable characteristics of alkali extracted corn husk fibres. The results revealed that increasing the acid concentration decreased fibre properties such as average fibre length, linear density and elongation at break. However, breaking tenacity achieved a maximum value, on treatment with 7.5 g/l sulfuric acid, before decreasing. These properties indicate the treatment’s adequacy for use in textile products. Acid treatment did not significantly alter thermo-gravimetric analysis values, indicating that the fibre could withstand wet processing conditions.

Downloads

Download data is not yet available.

References

ZABANIOTOU, A., ANDREOU, K. Development of alternative energy sources for GHG emissions reduction in the textile industry by energy recovery from cotton ginning waste. Journal of Cleaner Production, 2010, 18(8), 784−790, doi: 10.1016/j.jclepro.2010.01.006. DOI: https://doi.org/10.1016/j.jclepro.2010.01.006

MOHANTY, B.C., CHANDRAMOULI, K.V., NAIK, H.D. Natural dyeing processes of India. Ahmedabad : Calico Museum of Textile, 1987.

PANTHAPULAKKAL, S., ZERESHKIAN, A., SAIN, M. Preparation and characterization of wheat straw fibres for reinforcing application in injection molded thermoplastic composites. Bioresource technology, 2006, 97(2), 265−272, doi: 10.1016/j.biortech.2005.02.043. DOI: https://doi.org/10.1016/j.biortech.2005.02.043

MALHERBE, S., CLOTE, T. E. Lignocellulose biodegradation: fundamentals and applications. Reviews in Environmental Science and Biotechnology, 2002, 1, 105−114, doi: 10.1023/A:1020858910646. DOI: https://doi.org/10.1023/A:1020858910646

Natural fibres, biopolymers, and biocomposites. Edited by Amar K. Mohanty, Manjusri Misra and Lawrence T. Drzal. Boca Raton : CRC Press , 2005.

MONTEIRO, S.N., LOPES, F.P., BARBOSA, A.P., BEVITORI, A.B., SILVA, I.L., COSTA, L.L. Natural lignocellulosic fibers as engineering materials - an overview. Metallurgical and Materials Transactions A, 2011, 42(10), 2963−2974, doi: 10.1007/s11661-011-0789-6. DOI: https://doi.org/10.1007/s11661-011-0789-6

SATYANARAYANA K.G., ARIZAGA, G.G., WYPYCH, F. Biodegradable composites based on lignocellulosic fibers - an overview. Progress in Polymer Science, 2009, 34(9), 982−1021, doi: 10.1016/j.progpolymsci.2008.12.002. DOI: https://doi.org/10.1016/j.progpolymsci.2008.12.002

TSERKI, V., MATZINOS, P., ZAFEIROPOULOS, N.E., PANAYIOTOU, C. Development of biodegradable composites with treated and compatibilized lignocellulosic fibers. Journal of applied polymer science, 2006, 100(6), 4703−4710, doi: 10.1002/app.23240. DOI: https://doi.org/10.1002/app.23240

YILMAZ, N.D. Effects of enzymatic treatments on the mechanical properties of corn husk fibers. Journal of the Textile Institute, 2013, 104(4), 396−406, doi: 10.1080/00405000.2012.736707. DOI: https://doi.org/10.1080/00405000.2012.736707

VÄISÄNEN, T., HAAPALA, A., LAPPALAINEN, R., TOMPPO, L. Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: a review. Waste Management, 2016,54, 62−73, doi: 10.1016/j.wasman.2016.04.037. DOI: https://doi.org/10.1016/j.wasman.2016.04.037

JARABO, R., MONTE, M.C., FUENTE, E., SANTOS, S.F., NEGRO, C. Corn stalk from agricultural residue used as reinforcement fiber in fiber-cement production. Industrial Crops and Products, 2013, 43, 832−839, doi: 10.1016/j.indcrop.2012.08.034. DOI: https://doi.org/10.1016/j.indcrop.2012.08.034

DUNGANI, R., KARINA, M., SULAEMAN, A., HERMAWAN, D., HADIYANE, A. Agricultural waste fibers towards sustainability and advanced utilization: a review. Asian Journal of Plant Sciences, 2016, 15(1/2), 42−55. DOI: https://doi.org/10.3923/ajps.2016.42.55

MENGQI, Z., SHI, A., AJMAL, M., YE, L., AWAIS, M. Comprehensive review on agricultural waste utilization and high-temperature fermentation and composting. Biomass Conversion and Biorefinery, 2021, 1−24, doi: 10.1007/s13399-021-01438-5. DOI: https://doi.org/10.1007/s13399-021-01438-5

SADH, P.K., S. DUHAN, DUHAN, J.S. Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresources and Bioprocessing, 2018, 5(1), 1−15, doi: 10.1186/s40643-017-0187-z. DOI: https://doi.org/10.1186/s40643-017-0187-z

BAJPAI, P.K., MEENA, D., VATSA, S., SINGH, I. Tensile behavior of nettle fiber composites exposed to various environments. Journal of Natural Fibers, 2013, 10(3), 244−256, doi: 10.1080/15440478.2013.791912. DOI: https://doi.org/10.1080/15440478.2013.791912

YILMAZ, N. D., CALISKAN, E., YILMAZ, K. Effect of xylanase enzyme on mechanical properties of fibres extracted from undried and dried corn husks. Indian Journal of Fibre & Textile Research, 2014, 39(1), 60−64, http://hdl.handle.net/123456789/27370.

REDDY, N., YANG, Y. Properties and potential applications of natural cellulose fibres from corn husks. Green Chemistry, 2005, 7(4), 190−195, doi: 10.1039/B415102J. DOI: https://doi.org/10.1039/b415102j

REDDY, N., YANG, Y. Biofibers from agricultural byproducts for industrial applications. Trends in Biotechnology, 2005, 23(1), 22−27, doi: 10.1016/j.tibtech.2004.11.002. DOI: https://doi.org/10.1016/j.tibtech.2004.11.002

ROUF SHAH, T., K. PRASAD, KUMAR, P. Maize - a potential source of human nutrition and health: a review. Cogent Food & Agriculture, 2016, 2(1), 1−10, doi: 10.1080/23311932.2016.1166995. DOI: https://doi.org/10.1080/23311932.2016.1166995

KIRBY, R. H. Vegetable fibres, botany, cultivation and utilization. London : World Crops Books , 1963, 464.

LI, C.Y., KIM, H.W., WON, S.R., MIN, H.K., PARK, K.J., PARK, J.Y., AHN, M.S., RHEE, H.I. Corn husk as a potential source of anthocyanins. Journal of agricultural and food chemistry, 2008, 56(23), 11413−11416, doi: 10.1021/jf802201c. DOI: https://doi.org/10.1021/jf802201c

FAGBEMIGUN, T.K., FAGBEMI, O.D., OTITOJU, O., MGBACHIUZOR, E., IGME, C.C. Pulp and paper-making potential of corn husk. International Journal of AgriScience, 2014, 4(4), 209−213. DOI: https://doi.org/10.9734/BJAST/2014/10745

KOPANIA, E., J. WIETECHA, CIECHANSKA, D. Studies on isolation of cellulose fibres from waste plant biomass. Fibres & Textiles in Eastern Europe, 2012 (6B (96)), 167−172.

LEWIN, M., PEARCE, ELI M. Handbook of fibre science and technology. Vol. 4. New York : Marcel Dekker, 1985, 727−808.

YILMAZ, N.D., POWELL, B.N., LEE, B.P., MICHIELSEN, S. Hemp-fiber based nonwoven composites: effects of alkalization on sound absorption performance. Fibres and Polymers, 2012, 13(7), 915−922, doi: 10.1007/s12221-012-0915-0. DOI: https://doi.org/10.1007/s12221-012-0915-0

WAKELYN, P.J. Cotton fiber chemistry and technology. Boca Raton : CRC Press, 2006. DOI: https://doi.org/10.1201/9781420045888

AMADUCCI, S., ZATTA, A., PELATTI, F., VENTURI, G. Influence of agronomic factors on yield and quality of hemp (Cannabis sativa L.) fibre and implication for an innovative production system. Field crops research, 2008, 107(2), 161−169, doi: 10.1016/j.fcr.2008.02.002. DOI: https://doi.org/10.1016/j.fcr.2008.02.002

MUTHU, S.S., LI, Y., HU, J.Y., MOK, P.Y. Quantification of environmental impact and ecological sustainability for textile fibres. Ecological Indicators, 2012, 13(1), 66−74, doi: 10.1016/j.ecolind.2011.05.008. DOI: https://doi.org/10.1016/j.ecolind.2011.05.008

CHEN, Y., SHARMA-SHIVAPPA, R.R., KESHWANI, D., CHEN, C. Potential of agricultural residues and hay for bioethanol production. Applied biochemistry and biotechnology, 2007, 42(3), 276−290, doi: 10.1007/s12010-007-0026-3. DOI: https://doi.org/10.1007/s12010-007-0026-3

REDDY, N., SALAM, A., YANG, Y. Effect of lignin on the heat and light resistance of lignocellulosic fibers. Macromolecular Materials and Engineering, 2007,292(4), 458−466, doi: 10.1002/mame.200600446. DOI: https://doi.org/10.1002/mame.200600446

SARI, N. H., WARDANA, I. N. G., IRAWAN, Y. S., SISWANTO, E. The effect of sodium hydroxide on chemical and mechanical properties of corn husk fiber. Oriental Journal of Chemistry, 2017, 33(6), 3037−3042. DOI: https://doi.org/10.13005/ojc/330642

PALME, A., THELIANDER, H., BRELID, H. Acid hydrolysis of cellulosic fibres: comparison of bleached kraft pulp, dissolving pulps and cotton textile cellulose. Carbohydrate polymers, 2016, 136, 1281−1287, doi: 10.1016/j.carbpol.2015.10.015. DOI: https://doi.org/10.1016/j.carbpol.2015.10.015

JOHAR, N., AHMAD, I., DUERESNE, A. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products, 2012, 37(1), 93−99, doi: 10.1016/j.indcrop.2011.12.016. DOI: https://doi.org/10.1016/j.indcrop.2011.12.016

NEEDLES, H.L. Textile fibers, dyes, finishes, and processes: a concise guide. Park Ridge : Noyes Publication, 1986, 131.

Downloads

Published

2022-03-17

Issue

Section

Scientific article

How to Cite

Bajpai, P., Jana, U., & Ratnapandian, S. (2022). Assessment of Changes in Corn Husk Fibres after Acid Treatment. Tekstilec, 65(2), 106-112. https://doi.org/10.14502/tekstilec.65.2021061

Most read articles by the same author(s)