Assessment of Changes in Corn Husk Fibres after Acid Treatment


  • Pragati Bajpai Uttar Pradesh Textile Technology Institute, Kanpur, 208001, India
  • Utpal Jana Indian Institute of Handloom Technology, Salem, Tamil Nadu, 636001, India
  • Saminathan Ratnapandian Kumaraguru College of Technology, Department of Textile Technology, Coimbatore, 641049, India



acid treatment, alkali digestion, corn husk, hemicelluloses, lignin, thermogravimetry, TGA


Sustainability is desirable in any activity, including farming. Adding value to agricultural wastes such as stover (waste from corn cultivation) would provide financial benefits to farmers while reducing the environmental load of disposal. The literature identifies stover as being a raw material for bio-ethanol and a reinforcement for composites. Fibre from corn husks is generally extracted using an alkali digestion method followed optionally by enzymatic degradation. In this study, acid treatment was investigated for its feasibility to improve the desirable characteristics of alkali extracted corn husk fibres. The results revealed that increasing the acid concentration decreased fibre properties such as average fibre length, linear density and elongation at break. However, breaking tenacity achieved a maximum value, on treatment with 7.5 g/l sulfuric acid, before decreasing. These properties indicate the treatment’s adequacy for use in textile products. Acid treatment did not significantly alter thermo-gravimetric analysis values, indicating that the fibre could withstand wet processing conditions.


ZABANIOTOU, A., ANDREOU, K. Development of alternative energy sources for GHG emissions reduction in the textile industry by energy recovery from cotton ginning waste. Journal of Cleaner Production, 2010, 18(8), 784−790, doi: 10.1016/j.jclepro.2010.01.006. DOI:

MOHANTY, B.C., CHANDRAMOULI, K.V., NAIK, H.D. Natural dyeing processes of India. Ahmedabad : Calico Museum of Textile, 1987.

PANTHAPULAKKAL, S., ZERESHKIAN, A., SAIN, M. Preparation and characterization of wheat straw fibres for reinforcing application in injection molded thermoplastic composites. Bioresource technology, 2006, 97(2), 265−272, doi: 10.1016/j.biortech.2005.02.043. DOI:

MALHERBE, S., CLOTE, T. E. Lignocellulose biodegradation: fundamentals and applications. Reviews in Environmental Science and Biotechnology, 2002, 1, 105−114, doi: 10.1023/A:1020858910646. DOI:

Natural fibres, biopolymers, and biocomposites. Edited by Amar K. Mohanty, Manjusri Misra and Lawrence T. Drzal. Boca Raton : CRC Press , 2005.

MONTEIRO, S.N., LOPES, F.P., BARBOSA, A.P., BEVITORI, A.B., SILVA, I.L., COSTA, L.L. Natural lignocellulosic fibers as engineering materials - an overview. Metallurgical and Materials Transactions A, 2011, 42(10), 2963−2974, doi: 10.1007/s11661-011-0789-6. DOI:

SATYANARAYANA K.G., ARIZAGA, G.G., WYPYCH, F. Biodegradable composites based on lignocellulosic fibers - an overview. Progress in Polymer Science, 2009, 34(9), 982−1021, doi: 10.1016/j.progpolymsci.2008.12.002. DOI:

TSERKI, V., MATZINOS, P., ZAFEIROPOULOS, N.E., PANAYIOTOU, C. Development of biodegradable composites with treated and compatibilized lignocellulosic fibers. Journal of applied polymer science, 2006, 100(6), 4703−4710, doi: 10.1002/app.23240. DOI:

YILMAZ, N.D. Effects of enzymatic treatments on the mechanical properties of corn husk fibers. Journal of the Textile Institute, 2013, 104(4), 396−406, doi: 10.1080/00405000.2012.736707. DOI:

VÄISÄNEN, T., HAAPALA, A., LAPPALAINEN, R., TOMPPO, L. Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: a review. Waste Management, 2016,54, 62−73, doi: 10.1016/j.wasman.2016.04.037. DOI:

JARABO, R., MONTE, M.C., FUENTE, E., SANTOS, S.F., NEGRO, C. Corn stalk from agricultural residue used as reinforcement fiber in fiber-cement production. Industrial Crops and Products, 2013, 43, 832−839, doi: 10.1016/j.indcrop.2012.08.034. DOI:

DUNGANI, R., KARINA, M., SULAEMAN, A., HERMAWAN, D., HADIYANE, A. Agricultural waste fibers towards sustainability and advanced utilization: a review. Asian Journal of Plant Sciences, 2016, 15(1/2), 42−55. DOI:

MENGQI, Z., SHI, A., AJMAL, M., YE, L., AWAIS, M. Comprehensive review on agricultural waste utilization and high-temperature fermentation and composting. Biomass Conversion and Biorefinery, 2021, 1−24, doi: 10.1007/s13399-021-01438-5. DOI:

SADH, P.K., S. DUHAN, DUHAN, J.S. Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresources and Bioprocessing, 2018, 5(1), 1−15, doi: 10.1186/s40643-017-0187-z. DOI:

BAJPAI, P.K., MEENA, D., VATSA, S., SINGH, I. Tensile behavior of nettle fiber composites exposed to various environments. Journal of Natural Fibers, 2013, 10(3), 244−256, doi: 10.1080/15440478.2013.791912. DOI:

YILMAZ, N. D., CALISKAN, E., YILMAZ, K. Effect of xylanase enzyme on mechanical properties of fibres extracted from undried and dried corn husks. Indian Journal of Fibre & Textile Research, 2014, 39(1), 60−64,

REDDY, N., YANG, Y. Properties and potential applications of natural cellulose fibres from corn husks. Green Chemistry, 2005, 7(4), 190−195, doi: 10.1039/B415102J. DOI:

REDDY, N., YANG, Y. Biofibers from agricultural byproducts for industrial applications. Trends in Biotechnology, 2005, 23(1), 22−27, doi: 10.1016/j.tibtech.2004.11.002. DOI:

ROUF SHAH, T., K. PRASAD, KUMAR, P. Maize - a potential source of human nutrition and health: a review. Cogent Food & Agriculture, 2016, 2(1), 1−10, doi: 10.1080/23311932.2016.1166995. DOI:

KIRBY, R. H. Vegetable fibres, botany, cultivation and utilization. London : World Crops Books , 1963, 464.

LI, C.Y., KIM, H.W., WON, S.R., MIN, H.K., PARK, K.J., PARK, J.Y., AHN, M.S., RHEE, H.I. Corn husk as a potential source of anthocyanins. Journal of agricultural and food chemistry, 2008, 56(23), 11413−11416, doi: 10.1021/jf802201c. DOI:

FAGBEMIGUN, T.K., FAGBEMI, O.D., OTITOJU, O., MGBACHIUZOR, E., IGME, C.C. Pulp and paper-making potential of corn husk. International Journal of AgriScience, 2014, 4(4), 209−213. DOI:

KOPANIA, E., J. WIETECHA, CIECHANSKA, D. Studies on isolation of cellulose fibres from waste plant biomass. Fibres & Textiles in Eastern Europe, 2012 (6B (96)), 167−172.

LEWIN, M., PEARCE, ELI M. Handbook of fibre science and technology. Vol. 4. New York : Marcel Dekker, 1985, 727−808.

YILMAZ, N.D., POWELL, B.N., LEE, B.P., MICHIELSEN, S. Hemp-fiber based nonwoven composites: effects of alkalization on sound absorption performance. Fibres and Polymers, 2012, 13(7), 915−922, doi: 10.1007/s12221-012-0915-0. DOI:

WAKELYN, P.J. Cotton fiber chemistry and technology. Boca Raton : CRC Press, 2006. DOI:

AMADUCCI, S., ZATTA, A., PELATTI, F., VENTURI, G. Influence of agronomic factors on yield and quality of hemp (Cannabis sativa L.) fibre and implication for an innovative production system. Field crops research, 2008, 107(2), 161−169, doi: 10.1016/j.fcr.2008.02.002. DOI:

MUTHU, S.S., LI, Y., HU, J.Y., MOK, P.Y. Quantification of environmental impact and ecological sustainability for textile fibres. Ecological Indicators, 2012, 13(1), 66−74, doi: 10.1016/j.ecolind.2011.05.008. DOI:

CHEN, Y., SHARMA-SHIVAPPA, R.R., KESHWANI, D., CHEN, C. Potential of agricultural residues and hay for bioethanol production. Applied biochemistry and biotechnology, 2007, 42(3), 276−290, doi: 10.1007/s12010-007-0026-3. DOI:

REDDY, N., SALAM, A., YANG, Y. Effect of lignin on the heat and light resistance of lignocellulosic fibers. Macromolecular Materials and Engineering, 2007,292(4), 458−466, doi: 10.1002/mame.200600446. DOI:

SARI, N. H., WARDANA, I. N. G., IRAWAN, Y. S., SISWANTO, E. The effect of sodium hydroxide on chemical and mechanical properties of corn husk fiber. Oriental Journal of Chemistry, 2017, 33(6), 3037−3042. DOI:

PALME, A., THELIANDER, H., BRELID, H. Acid hydrolysis of cellulosic fibres: comparison of bleached kraft pulp, dissolving pulps and cotton textile cellulose. Carbohydrate polymers, 2016, 136, 1281−1287, doi: 10.1016/j.carbpol.2015.10.015. DOI:

JOHAR, N., AHMAD, I., DUERESNE, A. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products, 2012, 37(1), 93−99, doi: 10.1016/j.indcrop.2011.12.016. DOI:

NEEDLES, H.L. Textile fibers, dyes, finishes, and processes: a concise guide. Park Ridge : Noyes Publication, 1986, 131.




How to Cite

Bajpai, P., Jana, U., & Ratnapandian, S. (2022). Assessment of Changes in Corn Husk Fibres after Acid Treatment. Tekstilec, 65(2), 106–112.



Scientific article

Most read articles by the same author(s)