Development of Anti-Bacterial and Anti-Viral Nonwoven Surgical Masks for Medical Applications

Authors

  • Mazyar Ahrari Bursa Uludag University, Faculty of Engineering, Textile Engineering Department, Gorukle Campus, 16059, Nilufer, Bursa, Turkey
  • Mehmet Karahan Bursa Uludag University, Vocational School of technical Sciences, 16059, Nilufer, Bursa, Turkey
  • Muzzamal Hussain National Textile University, School of Engineering & Technology, Faisalabad, 37610, Punjab, Pakistan https://orcid.org/0000-0002-8021-1347
  • Yasir Nawab National Textile University, School of Engineering & Technology, Faisalabad, 37610, Punjab, Pakistan
  • Asfandyar Khan National Textile University, School of Engineering & Technology, Faisalabad, 37610, Punjab, Pakistan
  • Amir Abbas Shirazi Bahauddin Zakariya University, College of Textile Engineering, Multan, 60000, Punjab, Pakistan

DOI:

https://doi.org/10.14502/tekstilec.65.2022020

Keywords:

polypropylene, nonwoven fabric, antimicrobial, silver nanoparticles

Abstract

This article aims to investigate the development of surgical masks for medical applications by incorporating biocidal silver nanoparticles. Medical masks were developed in three layers of a nonwoven fabric, where the outer and inner layers were made of a spun-bond polypropylene nonwoven fabric and the middle layer con­sisted of a melt-blown nonwoven polypropylene fabric. In this study, silver nanoparticles in the concentrations of 1–5% were applied to masks with the pad-dry-cure method. The samples were cured at room temperature and subsequently examined for antimicrobial properties. Scanning electron microscopy, energy dispersive spectroscopy and Fourier transform infrared spectroscopy were used to investigate the morphological charac­teristics and chemical composition of the samples. Microbial cleanliness, bacterial filtration efficiency, antiviral effect and breathability tests were performed according to standard test protocols. The results revealed that the application of silver nanoparticles to a three-layer mask rendered the end product with outstanding anti­microbial and antiviral properties with poor breathability (air permeability) results.

References

HO, K.F., LIN, L.Y., WENG, S.P., CHUANG, K.J. Medical mask versus cotton mask for preventing respiratory droplet transmission in micro environments. Science of the Total Environment, 2020, 735, doi: 10.1016/j.scitotenv.2020.139510. DOI: https://doi.org/10.1016/j.scitotenv.2020.139510

MONTANÕ-LUNA, Victoria Eugenia, MIRANDA-NOVALES, María Guadalupe. Face masks use as a preventive measure in the context of the SARS-CoV-2 pandemic. Revista Mexicana de Pediatría, 2020, 87(5), 163–169, doi: 10.35366/97169. DOI: https://doi.org/10.35366/97169

UNG, Carolina Oi Lam. Community pharmacist in public health emergencies: quick to action against the coronavirus 2019-nCoV outbreak. Research in Social and Administrative Pharmacy, 2020, 16(4), 583–586, doi: 10.1016/j.sapharm.2020.02.003. DOI: https://doi.org/10.1016/j.sapharm.2020.02.003

ZABEL, R.A., MORRELL, J.J. Wood microbiology: decay and its prevention. San Diego : Academic Press, 1992, pp. 52–89. DOI: https://doi.org/10.1016/B978-0-12-775210-5.50007-7

XIN, Xiaying, HUANG, Gordon, ZHANG, Baiyu. Review of aquatic toxicity of pharmaceuticals and personal care products to algae. Journal of Hazardous Materials, 2021, 410, doi: 10.1016/j.jhazmat.2020.124619. DOI: https://doi.org/10.1016/j.jhazmat.2020.124619

MELBY, P.C., ANSTEAD, G.M. Immune responses to protozoans. In Clinical immunology: principles and practice. Edited by Robert R. Rich, Thomas A. Fleisher, William T. Shearer, Harry W. Schroeder, Anthony J. Frew, Cornelia M. Weyand. Elsevier, 2008, pp. 433–445.

PANDEY, K. D., PATEL, A. K., SINGH, M., KUMARI, A. Secondary metabolites from bacteria and viruses. In Natural bioactive compounds. Edited by Rajeshwar P. Sinha and Donat-P. Häder. Academic Press, 2021, pp. 19–40, doi: 10.1016/B978-0-12-820655-3.00002-1. DOI: https://doi.org/10.1016/B978-0-12-820655-3.00002-1

KIRTI, A., SHARMA, M., RANI, K., BANSAL, A. CRISPRing protozoan parasites to better understand the biology of diseases. Progress in Molecular Biolog.y and Translational Science, 180, 21-68, doi: 10.1016/bs.pmbts.2021.01.004 DOI: https://doi.org/10.1016/bs.pmbts.2021.01.004

MORENS, D.M., FOLKERS, G.K., FAUCI, A.S. What is a pandemic? Journal of Infectious Disease, 2009, 200(7), 1018–1021, doi: 10.1086/644537. DOI: https://doi.org/10.1086/644537

SNOWDEN, Frank M. Epidemics and society: from the black death to the present. New Haven : Yale University Press, 2019, 512 p., doi: 10.2307/j.ctvqc6gg5. DOI: https://doi.org/10.12987/9780300249149

HAYS, J.N. Epidemics and pandemics: their impacts on human history. Santa Barbara : ABC-CLIO, 2005.

COBURN, B.J., WAGNER, B.G., BLOWER, S. Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1). BMC Medicine, 2009, 7, 1–8, doi: 10.1186/1741-7015-7-30. DOI: https://doi.org/10.1186/1741-7015-7-30

SAMAL, J. A historical exploration of pandemics of some selected diseases in the world. International Journal of Healing Science and Research, 2014, 4(2), 165–169.

POTTER, C.W. A history of influenza. Journal of Applied Microbiology, 2001, 91, 572–579. DOI: https://doi.org/10.1046/j.1365-2672.2001.01492.x

De GRAAF, J. Affluenza: the all‐consuming epidemic. Environmental Management and Healing, 2002, 13(2), 224, doi: 10.1108/emh.2002.13.2.224.3. DOI: https://doi.org/10.1108/emh.2002.13.2.224.3

WIJDICKS, E.F.M. Historical lessons from twentieth-century pandemics due to respiratory viruses. Neurocritical Care, 2020, 33, 591–596, doi: 10.1007/s12028-020-00983-7. DOI: https://doi.org/10.1007/s12028-020-00983-7

KELLY, B.D. Plagues, pandemics and epidemics in Irish history prior to COVID-19 (coronavirus): what can we learn? Irish Journal of Psychological Medicine, 2020, 37(4), 269–274, doi: 10.1017/ipm.2020.25. DOI: https://doi.org/10.1017/ipm.2020.25

PIRET, J., BOIVIN, G. Pandemics throughout history. Frontiers in Microbiology, 2021, 11, doi: 10.3389/fmicb.2020.631736. DOI: https://doi.org/10.3389/fmicb.2020.631736

CUNHA, B.A. Influenza: historical aspects of epidemics and pandemics. Infectious Disease Clinic of North America, 2004, 18(1), 141–155, doi: 10.1016/S0891-5520(03)00095-3. DOI: https://doi.org/10.1016/S0891-5520(03)00095-3

LINA, B. History of influenza pandemics. In Paleomicrobiology: past human infections. Edited by Didier Raoult and Michel Drancourt. Berlin, Heidelberg : Springer, 2008, pp. 199–211. DOI: https://doi.org/10.1007/978-3-540-75855-6_12

GHENDON, Y. Introduction to pandemic influenza through history. European Journal of Epidemiology, 1994, 10, 451–453, doi: 10.1007/BF01719673. DOI: https://doi.org/10.1007/BF01719673

RAHMAN, M.S., MONDAL, M.I.H., HASAN, M.S., ALOM, J., AHMED, M.B., AHMED, F. Microorganisms, infection and the role of medical textiles. In Antimicrobial textiles from natural resources. Edited by Md. Ibrahim H. Mondal. Woodhead Publishing, 2021, pp. 45–85, doi: 10.1016/B978-0-12-821485-5.00004-4. DOI: https://doi.org/10.1016/B978-0-12-821485-5.00004-4

KÄHLER, C.J., HAIN, R. Fundamental protective mechanisms of face masks against droplet infections. Journal of Aerosol Science, 2020, 148, doi: 10.1016/j.jaerosci.2020.105617. DOI: https://doi.org/10.1016/j.jaerosci.2020.105617

HOWARD, J., HUANG, A., LI, Z., TUFEKCI, Z., ZDIMAL, V., VAN DER WESTHUIZEN, H. M., ... & RIMOIN, A. W. An evidence review of face masks against COVID-19. Proceedings of the National Academy of Sciences, 2021, 118, doi: 10.1073/pnas.2014564118. DOI: https://doi.org/10.1073/pnas.2014564118

CHUGHTAI, A.A., STELZER-BRAID, S., RAWLINSON, W., PONTIVIVO, G., WANG, Q., PAN, Y., ... & MACINTYRE, C.R. Contamination by respiratory viruses on outer surface of medical masks used by hospital healthcare workers. BMC Infectious Disease, 2019, 19, doi: 10.1186/s12879-019-4109-x. DOI: https://doi.org/10.1186/s12879-019-4109-x

HAMMETT, E. How long does Coronavirus survive on different surfaces? BDJ Team, 2020, 7, 14–15, doi: 10.1038/s41407-020-0313-1. DOI: https://doi.org/10.1038/s41407-020-0313-1

RAI, M., YADAV, A., GADE, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 2009, 27(1), 76–83, doi: 10.1016/j.biotechadv.2008.09.002. DOI: https://doi.org/10.1016/j.biotechadv.2008.09.002

MURPHY, M., TING, K., ZHANG, X., SOO, C., ZHENG, Z. Current development of silver nanoparticle preparation, investigation, and application in the field of medicine. Journal of Nanomaterials, 2015, 2015, doi: 10.1155/2015/696918. DOI: https://doi.org/10.1155/2015/696918

SILVER, S., PHUNG, L.T. Bacterial heavy metal resistance: new surprises. Annual Review in Microbiology, 1996, 50, 753–789, doi: 10.1146/annurev.micro.50.1.753. DOI: https://doi.org/10.1146/annurev.micro.50.1.753

CATAURO, M., RAUCCI, M.G., DE GAETANO, F., MAROTTA, A. Antibacterial and bioactive silver-containing Na2O·CaO·2SiO2 glass prepared by sol–gel method. Journal of Materials Science: Materials in Medicine, 2004, 15, 831–837, doi: 10.1023/B:JMSM.0000032825.51052.00. DOI: https://doi.org/10.1023/B:JMSM.0000032825.51052.00

CRABTREE, J. H., BURCHETTE, R. J., SIDDIQI, R. A., HUEN, I. T., HADNOTT, L. L., FISHMAN, A. The efficacy of silver-ion implanted catheters in reducing peritoneal dialysis-related infections. Peritoneal Dialysis International, 2003, 23(4), 368–374, doi: 10.1177/089686080302300410. DOI: https://doi.org/10.1177/089686080302300410

ZHAO, G., STEVENS, S.E. Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals, 1998, 11, 27–32, doi: 10.1023/A:1009253223055. DOI: https://doi.org/10.1023/A:1009253223055

SALUNKE, G. R., GHOSH, S., KUMAR, R. S., KHADE, S., VASHISTH, P., KALE, T., ... CHOPADE, B. A. Rapid efficient synthesis and characterization of silver, gold, and bimetallic nanoparticles from the medicinal plant Plumbago zeylanica and their application in biofilm control. International Journal of Nanomedicine, 2014, 9, 2635–2653, doi: 10.2147/IJN.S59834. DOI: https://doi.org/10.2147/IJN.S59834

WANG, C., HUANG, X., DENG, W., CHANG, C., HANG, R., TANG, B. A nano-silver composite based on the ion-exchange response for the intelligent antibacterial applications. Material Science Engineering C, 2014, 41, 134–141, doi: 10.1016/j.msec.2014.04.044. DOI: https://doi.org/10.1016/j.msec.2014.04.044

TAMAYO, L.A., ZAPATA, P.A., VEJAR, N.D., AZÓCAR, M.I., GULPPI, M.A., ZHOU, X., ... PÁEZ, M.A. Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogenes. Material Science Engineering C, 2014, 40, 24–31, doi: 10.1016/j.msec.2014.03.037. DOI: https://doi.org/10.1016/j.msec.2014.03.037

RUBIO-ROMERO, J.C., DEL CARMEN PARDO-FERREIRA, M., TORRECILLA-GARCÍA, J.A., CALERO-CASTRO, S. Disposable masks: disinfection and sterilization for reuse, and non-certified manufacturing, in the face of shortages during the COVID-19 pandemic. Safe Science, 2020, 129, doi: 10.1016/j.ssci.2020.104830. DOI: https://doi.org/10.1016/j.ssci.2020.104830

REYCHLER, G., VANDER STRAETEN, C., SCHALKWIJK, A., PONCIN, W. Effects of surgical and cloth facemasks during a submaximal exercise test in healthy adults. Respiratory Medicine, 2021, 186, doi: 10.1016/j.rmed.2021.106530. DOI: https://doi.org/10.1016/j.rmed.2021.106530

Downloads

Published

2020-06-14

How to Cite

Ahrari, M., Karahan, M., Hussain, M., Nawab, Y., Khan, A., & Shirazi, A. A. (2020). Development of Anti-Bacterial and Anti-Viral Nonwoven Surgical Masks for Medical Applications. Tekstilec, 65(2), 135–146. https://doi.org/10.14502/tekstilec.65.2022020

Issue

Section

Scientific article

Most read articles by the same author(s)