Prospects for the Development of Smart Clothing with the Use of Textile Materials with Magnetic Properties
DOI:
https://doi.org/10.14502/tekstilec.65.2021050Keywords:
textile materials, nanotechnology, magnetite, smart clothes, magnetic forceAbstract
The article studies the properties of textile materials filled with magnetite nanoparticles. These materials have great prospects for creating smart clothes. They have both magnetic and hygienic properties. Chemical transformations in the production of magnetic nanopowder are described. The end product of the process is a mixture of oxides of divalent and ferric iron. The resulting mixture has magnetic properties. Conducted micro and macro experiments showed sufficient adhesion retention strength of magnetite nanoparticles in a textile material. Microscopic studies of the attachment of magnetic particles to the fibers of a textile material have been conducted. The data obtained in express mode allow us to determine the average mass of a magnetic particle in a textile material, the total number of nanoparticles, and, accordingly, to predict the magnetic force that a textile material saturated with magnetite can possess. The existence of the magnetic properties of a textile material filled with magnetite nanoparticles has been proven. A mathematical model of the dependence of the magnetic attraction force of a textile material on the distance and the number of abrasion cycles has been developed. The directions of the use of magnetic textile materials for the creation of smart clothes are proposed. Potential uses for such materials include sportswear and textiles for the disabled. The developed methods can predict the magnetic strength of the obtained textile materials and evaluate their resistance, which is necessary in the development of smart clothing elements based on these materials.
Downloads
References
BARABÁŠ, J., BALOGOVÁ, Ľ., GÁLA, M., BABUŠIAK, B. Conductive paths and influence of theirinterconnection on tranmission of electric signal in smart clothing. Vlákna a textil, 24(4), 2017, 9–14.
ROGALE FIRŠT, Snježa na, ROGALE , Dubravko, NIKOLIĆ, Gojko Intelligent clothing: first and second generation clothing with adaptive thermal insulation properties. Textile Research Journal, 2018, 88(9), 2214–2233, doi: 10.1177/0040517517718190. DOI: https://doi.org/10.1177/0040517517718190
MAGNI, A. Nanotechnologies and the textile industry: the future is upon us. Tinctoria, 2004, 101(10), 60–61.
YEZHOVA, O.V. Prognosing development of textile nanotechnologies. Vlákna a textil, 2017, 24(4), 66–69.
HAN, Y., OBENDORF, S.K. Reactivity and reusability of immobilized zinc oxide nanoparticles in fibers on methyl parathion decontamination. Textile Research Journal, 2016, 86(4), 339–349, doi: 10.1177/0040517515596935. DOI: https://doi.org/10.1177/0040517515596935
ZHANG, M., XIE, W., TANG, B., SUN, L., WANG, X. Synthesis of TiO2 &SiO2 nanoparticles as efficient UV absorbers and their application on wool. Textile Research Journal, 2017, 87(14), 1784–1792, doi: 10.1177/0040517516659375. DOI: https://doi.org/10.1177/0040517516659375
VLASENKO, V., SMERTENKO, P., BEREZNENKO, S., ARABULI, S. Synthesis of metals nano-particles in the porous structure of textiles for UV-shielding. Vlákna a textil, 2017, 24(4), 30–33.
DIACHOK, T., BEREZNENKO, S., YAKYMCHUK, D., ALEKSANDROV, M. Development of equipment for complex man protection from artificial non-ionizing EMR. Vlákna a textile, 2019, 26(2), 9–13.
GUTAROWSKA, B., STAWSKI, D., SKÓRA, J., HERCZYŃSKA, L., PIELECH-PRZYBYLSKA, K. PLA nonwovens modified with poly(dimethylaminoethyl methacrylate) as antimicrobial filter materials for workplaces. Textile Research Journal, 2015, 85(10), 1083–1094, doi: 10.1177/0040517514559581. DOI: https://doi.org/10.1177/0040517514559581
KAR, T.R., SAMANTA, A.K., SAJID, M., KAWARE, R. UV protection and antimicrobial finish on cotton khadi fabric using a mixture of nanoparticles of zinc oxide and poly-hydroxy-amino methyl silicone. Textile Research Journal, 2019, 89(11), 2260–2278, doi: 10.1177/0040517518790973. DOI: https://doi.org/10.1177/0040517518790973
XU, S., ZHANG, F., SONG, J., KISHIMOTO, Y., MORIKAWA, H. Preparation of silver nanoparticle-coated calcium alginate fibers by hyperbranched poly(amidoamine)-mediated assembly and their antibacterial activity. Textile Research Journal, 2015, 86(8), 878–886, doi: 10.1177/0040517515599745. DOI: https://doi.org/10.1177/0040517515599745
BOGREN, S., FORNARA, A., LUDWIG, F., DEL PUERTO MORALES, M., STEINHOFF, U., HANSEN, M.F., KAZAKOVA, O., JOHANSSON, C. Classification of magnetic nanoparticle systems - synthesis, standardization and analysis methods in the NanoMag project. International Journal of Molecular Sciences, 2015, 16(9), 20308– 20325, doi: 10.3390/ijms160920308. DOI: https://doi.org/10.3390/ijms160920308
TSY K HA NOVSK A, I., YEVLASH, V., ALEX ANDROV, A., KHAMITOVA, B., SVIDLO, K., NECHUIVITER, O. Forming the structure of whipped desserts when introducing the food additive “Magnetofood” to their formulation. Eastern-European Journal of Enterprise Technologies, 2019, 2(11(98)), 45–55, doi:10.15587/1729-4061.2019.161855. DOI: https://doi.org/10.15587/1729-4061.2019.161855
RODGERS, J., ZUMBA, J., FORTIER, C. Measurement comparison of cotton fiber micronaire and its components by portable near infrared spectroscopy instruments. Textile Research Journal, 2017, 87(1), 57–69, doi: 10.1177/0040517515622153. DOI: https://doi.org/10.1177/0040517515622153
RIABCHYKOV, M., ALEXANDROV, A., TSYKHANOVSKA, I., NECHIPOR, S., NIKULINA, A., VILKOV, S. Distribution of the sizes of microcapsules in two-phase emulsions for treatment of textile materials. Vlákna a textile, 2019, 26(4), 47–52.
LIU, S., TONG, J., YANG, C., LI, L. Smart e-textile: resistance properties of conductive knitted fabric - single pique. Textile Research Journal, 2017, 87(14), 1669–1684, doi: 10.1177/0040517516658509. DOI: https://doi.org/10.1177/0040517516658509
RIABCHYKOV, M., ALEXANDROV, A., SYCHOV, Y., NIKULINA, A. Bacteriostatic properties of medical textiles treated with nanomaterials based on Fe2 O3 . IOP Conference Series: Materials Science and Engineering, 2021, 1031(1), 1–6, doi:10.1088/1757-899x/1031/1/012036. DOI: https://doi.org/10.1088/1757-899X/1031/1/012036
MORADI, B., FERNÁNDEZ-GARCÍA, R., GIL, I. Effect of smart textile metamaterials on electromagnetic performance for wireless body area network systems. Textile Research Journal, 2019, 89(14), 2892–2899, doi: 10.1177/0040517518803786. DOI: https://doi.org/10.1177/0040517518803786
PÉREZ-VILLACASTÍN, Julián, GAETA, Eugenio. Smart clothes to take care of people or smart people who use clothes to take care of themselves? Revista Española de Cardiología, 2015, 68(7), 559–561, doi: 10.1016/j.rec.2015.03.009. DOI: https://doi.org/10.1016/j.rec.2015.03.009
SCATAGLINI, S., MOORHEAD, A.P., FELETTI, F. A systematic review of smart clothing in sports: possible applications to extreme sports. Muscles, Ligaments and Tendons Journal, 2020, 10(2), 333–342. DOI: https://doi.org/10.32098/mltj.02.2020.19
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Mykola Riabchykov, Alexandr Alexandrov, Roman Trishch, Anastasiia Nikulina, Natalia Korolyova
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.