Transfer and Friction Characteristics of Sports Socks Fabrics Made of Synthetic Fibres in Different Structures


  • Sibel Kaplan Suleyman Demirel University, Textile Engineering Department, West Campus, Isparta, Turkey Author
  • Betül Akgünoğlu Suleyman Demirel University, Textile Engineering Department, West Campus, Isparta, Turkey Author



sports socks, Thermocool®, Polycolon®, friction, liquid transfer


Sports socks fabrics produced from polyester, polypropylene, their modified forms Thermocool®, Polycolon®, in three different structures (single jersey, piquet, terry) were investigated for their skin-fabric friction, permeability (air and water vapour), liquid absorption and transfer (absorbency, immersion, absorption capacity, wetback and drying) properties. According to the results, the effect of structure is dominant for frictional characteristics but focusing on the material, polypropylene created a bulkier and lighter structure with lower friction coeffi­cients, an advantage for sports socks. The effect of structure is greater than the material also for some thermal comfort parameters, e.g. air permeability and absorbency. Focusing on materials, besides their better liquid transfer characteristics, modified forms of both fibres had worse performances for air permeability and absor­bency compared to their standard forms. Absorption capacity, wetback and drying performances were related to fabric density besides the polyester’s higher regain capacity. While Polycolon® had superiority for wetback performance against standard polypropylene, this was not the case for Thermocool®; however, both modified materials showed apparent superiority for drying periods. Piquet structures were advantageous for absorption capacity and wetback performances for polypropylene. For sports socks parts, specific needs can be met by changing the fabric structure. Considering the materials, polypropylene and Polycolon® can be recommended for both thermal and tactile aspects.


Download data is not yet available.


DAN, R., FAN, X. R., XU, L. B., ZHANG, M. Numerical simulation of the relationship between pressure and material properties of the top part of socks. Journal of the Textile Institute, 2013, 104(8), 844–851, doi: 10.1080/00405000.2012.758516. DOI:

ASHFORD, R. L., WHITE, P., INDRAMOHAN, V. The aerodynamics of running socks: Reality or rhetoric? The Foot, 2011, 21(4), 184–187, doi: 10.1016/j.foot.2011.06.002. DOI:

HOLE, L. G. Sweat disposal from footwear and health and hygiene of foot skin. Journal Society Cosmetic Chemists, 1973, 24(1), 43–63, https://

CAMERON, B. A., BROWN, D. M., DALLAS, M. J., BRANDT, B. Effect of natural and synthetic fibers and film and moisture content on stratum corneum hydration in an occlusive system. Textile Research Journal, 1997, 67(8), 585–592, doi: 10.1177/004051759706700806. DOI:

LI, Y., ZHU, Q., YEUNG, K. W. Influence of thickness and porosity on coupled heat and liquid moisture transfer in porous textiles. Textile Research Journal, 2002, 72(5), 435–446, doi: 10.1177/004051750207200511. DOI:

ZHANG, P., GONG, R. H., YANAİ, Y., TOKURA, H. Influence of clothing material properties on rectal temperature in different environments. International Journal of Clothing Science and Technology, 2002, 14(5), 299–306, doi: 10.1108/09556220210446112. DOI:

GERHARDT, L. C., STRÄSSLE, V., LENZ, A., SPENCER, N. D., DERLER, S. Influence of epidermal hydration on the friction of human skin against textiles. Journal of The Royal Society Interface, 2008, 5(28), 1317–1328, doi: 10.1098/ rsif.2008.0034. DOI:

ROSSI, R. M., STÄMPFLI, R., PSIKUTA, A., RECHSTEINER, I., BRÜHWILER, P. A. Transplanar and in-plane wicking effects in sock materials under pressure. Textile Research Journal, 2011, 81(15), 1549–1558, doi: 10.1177/0040517511413317. DOI:

IRZMAŃSKA, E., DUTKIEWICZ, J. K., IRZMAŃSKI, R. New approach to assessing comfort of use of protective footwear with a textile liner and its impact on foot physiology. Textile Research Journal, 2014, 84(7), 728–738, doi: 10.1177/0040517513507362 DOI:

TANG, K. P. M., KAN, C. W., FAN, J. T. Evaluation of water absorption and transport property of fabrics. Textile Progress, 2014, 46(1), 1–132, doi: 10.1080/00405167.2014.942582. DOI:

ZHONG, W., XING, M. M., PAN, N., MAIBACH, H. I. Textiles and human skin, microclimate, cutaneous reactions: an overview. Cutaneous and Ocular Toxicology, 2006, 25(1), 23–39, doi: 10.1080/15569520500536600. DOI:

BERTAUX, E., DERLER, S., ROSSI, R. M., ZENG, X., KOEHL, L., VENTENAT, V. Textile, physiological and sensorial parameters in sock comfort. Textile Research Journal, 2010, 80(17), 1803–1810, doi: 10.1177/0040517510369409. DOI:

GWOSDOW, A.R., STEVENS, J.C., BERGLUND, L.G. AND STOLWIJK, J. A. J. Skin friction and fabric sensations in neutral and warm environments. Textile Research Journal, 1986, 56(9), 574– 580, doi: 10.1177/004051758605600909. DOI:

HERRING, K.M. AND RICHIE JR, D.H. Friction blisters and sock fiber composition. A double-blind study. Journal of the American Podiatric Medical Association, 1990, 80(2), 63–71, doi: 10.7547/87507315-80-2-63. DOI:

BAUSSAN, E., BUENO, M. A., ROSSI, R. M. AND DERLER, S. Experiments and modelling of skin-knitted fabric friction. Wear, 2010, 268(9- 10), 1103–1110, doi: 10.1016/j.wear.2010.01.010. DOI:

BAUSSAN, E., BUENO, M. A., ROSSI, R. M., DERLER, S. Analysis of current running sock structures with regard to blister prevention. Textile Research Journal, 2013, 83(8), 836–848, doi: 10.1177/0040517512461698. DOI:

LI, W., LIU, X. D., CAI, Z. B., ZHENG, J., ZHOU, Z. R. Effect of prosthetic socks on the frictional properties of residual limb skin. Wear, 2011, 271(11-12), 2804–2811, doi: 10.1016/j. wear.2011.05.032. DOI:

VAN AMBER, R. R., LOWE, B. J., NIVEN, B. E., LAING, R. M., WILSON, C. A., COLLIE, S. The effect of fiber type, yarn structure and fabric structure on the frictional characteristics of sock fabrics. Textile Research Journal, 2015, 85(2), 115–127, doi: 10.1177/0040517514530029. DOI:

DAI, X.Q., LI, Y., ZHANG, M., CHEUNG, J. T. M. Effect of sock on biomechanical responses of foot during walking. Clinical Biomechanics, 2006, 21(3), 314–321, doi: 10.1016/j. clinbiomech.2005.10.002. DOI:

BAUSSAN, E. Tribological study and modeling of skin-sock contact application to running. Doctoral Thesis. Mulhouse : Haute Alsace University, 2010.

DYCK, W. A review of footwear for cold/wet scenarios. Part 2: Socks, liners, and insoles (Technical note DREO-TN-93-28). Ottawa : Defence Research Establishment, 1993, https://

BA BU, B. S ., SE N T H I LK U M A R , P., SENTHILKUMAR, M. Effect of yarn linear density on moisture management characteristics of cotton/polypropylene double-layer knitted fabrics. Industria Textila, 2015, 66(3), 123–130.

BA BU, B . S . , SE N T H İ L K U M A R , P. , SENTHİLKUMAR, M. Effect of yarn type on moisture transfer characteristics of double-face knitted fabrics for active sportswear. Journal of Industrial Textiles, 2020, 49(8), 1078–1099, doi: 10.1177/1528083718805717. DOI:

High performance technical textiles. Edited by R. Paul. 1st edition. Hoboken : John Wiley & Sons, 2019, 37–52. DOI:

A N T TON EN, H., PIETIK A I N EN, P., RINTAMAKI, H., RISSANEN, S. Cold protective gloves in meat processing industry-product development and selection. In Ergonomics of protective clothing. Proceedings of NOKOBETEF 6 and 1st European conference on protective clothing. Edited by K. Kuklane and I. Holmer. Stockholm : Arbetslivsinstitutet, 2000, 212–215.

BERGER, C., MANZ, G.R. Climate configurable sole and shoe. US patent no. 6817112. 2004-16-11.

MARTÍNEZ NOVA, A., MARCOS-TEJEDOR, F., GÓMEZ MARTÍN, B., SÁNCHEZRODRÍGUEZ, R., ESCAMILLA-MARTÍNEZ, E. Bioceramic-fiber socks have more benefits than cotton-made socks in controlling bacterial load and the increase of sweat in runners. Textile Research Journal, 2018, 88(6), 696–703, doi: 10.1177/0040517516688631. DOI:

ADVANSA ThermoCool introduced at OR [online]. RIS [cited January 20, 2020]. Available from: .

POLYCOLON [online]. Scholler the spinning group an Indorama Ventures Company [cited January 20, 2020]. Available from: .

FOURT, L., SOOKNE, A. M., FRISHMAN, D., HARRIS M. The rate of drying of fabrics. Textile Research Journal, 1951, 21(1), 26–33, doi: 10.1177/004051755102100107. DOI:

ZHUANG, Q., HARLOCK, S. C., BROOK, D. B. Transfer wicking mechanisms of knitted fabrics used as undergarments for outdoor activities. Textile Research Journal, 2002, 72(8), 727–734, doi: 10.1177/004051750207200813. DOI:

RICHIE, D.H. Socks: hosiery-essential equipment for the athlete [online]. Athletic Equipment Managers Association [cited January 20, 2020]. Available from: .

SUGANTHİ, T., SENTHİLKUMAR, P., DİPİKA, V. Thermal comfort properties of a bi-layer knitted fabric structure for volleyball sportswear. Fibres & Textiles in Eastern Europe, 2017, 1(121), 75–80, doi: 10.5604/12303666.1227885. DOI:

HSIEH, Y. L. Liquid transport in fabric structures. Textile Research Journal, 1995, 65(5), 299– 307, doi: 10.1177/004051759506500508. DOI:

SIRKOVÁ, B. K., MOUČKOVÁ, E. Analysis possibilities of controlled transport of moisture in woven fabrics. Autex Research Journal, 2018, 18(4), 385–391, doi: aut-2018-0008. DOI:

PAVKO-CUDEN, A., ELESINI-STANKOVIČ, U. Elastane addition impact on structural and transfer properties of viscose and polyacrylonitrile knits. Acta Chimica Slovenica, 2010, 57(4), 957–962.

SUGANTHI, T., & SENTHILKUMAR, P. Moisture-management properties of bi-layer knitted fabrics for sportswear. Journal of Industrial Textiles, 2018, 47(7), 1447–1463, doi: 10.1177/1528083717692594. DOI:






Scientific article

How to Cite

Kaplan, S., & Akgünoğlu, B. (2021). Transfer and Friction Characteristics of Sports Socks Fabrics Made of Synthetic Fibres in Different Structures. Tekstilec, 64(4), 325-337.