Performance Evaluation of PLA Based Biocomposites Reinforced with Photografted PALF

Authors

  • A. N. M. Masudur Rahman Bangladesh University of Textiles (BUTEX), Department of Fabric Engineering, Faculty of Textile Engineering, 92, Shaheed Tajuddin Ahmed Avenue, Tejgaon I/A, Dhaka-1208, Bangladesh; Institute of Radiation and Polymer Technology (IRPT), Polymer Composite Laboratory, Bangladesh Atomic Energy Commission, Dhaka-1349, Bangladesh Author https://orcid.org/0000-0002-4483-6606
  • Shah Alimuzzaman Bangladesh University of Textiles (BUTEX), Department of Fabric Engineering, Faculty of Textile Engineering, 92, Shaheed Tajuddin Ahmed Avenue, Tejgaon I/A, Dhaka-1208, Bangladesh Author
  • Ruhul A. Khan Institute of Radiation and Polymer Technology (IRPT), Polymer Composite Laboratory, Bangladesh Atomic Energy Commission, Dhaka-1349, Bangladesh Author

DOI:

https://doi.org/10.14502/Tekstilec2021.64.230-246

Keywords:

photografting, PALF, thermo-mechanical properties, PLA, UV radiation

Abstract

In this study, biocomposites were fabricated through a compression moulding technique that used untreated and grafted pineapple leaf fibre separately with polylactic acid (PLA) as a matrix. For grafting, pineapple leaf fibre (PALF) was chemically modified using two different monomers, i.e. 2-hydroxyethyl methacrylate (HEMA) and methyl methacrylate (MMA) solutions, in the presence of methanol (MeOH) and photoinitiator (Darocur-1664) under ultraviolet (UV) radiation with the aim of improving thermo-mechanical characteristics. Based on grafting efficiency and mechanical attributes, the intensity of UV radiation and monomer concentration were maximized. A series of solutions, created by varying the concentrations (10‒60%) of monomers in MeOH along with 2% photoinitiator, were prepared. Experimental results revealed that composites made of PALF grafted with 30% HEMA at the 15th pass and 40% MMA at the 20th pass of UV radiation achieved the optimum mechanical properties compared with an untreated PALF/PLA composite. The optimized solutions were further enhanced by adding various concentrations (0.5‒1.5%) of urea, with the best mechanical features achieved using a 1% concentration of urea. The chemical bonds formed due to photografting were viewed using Fourier transform infrared spectroscopy (FTIR). Degradation behaviour under heat was determined through thermogravimetric analysis, which found that photografted PALF/PLA showed significantly better thermal stability than the untreated composite sample. A water uptake test showed that grafting reduced the water retention capacity of the treated composite significantly. Crystallization characteristics were inspected using a differential scanning calorimeter, which showed that grafted PALF had a substantial effect on the degree of crystallization of PLA. In addition, scanning electron microscopy was used to monitor the interfacial bond, and revealed that interfacial adhesion was enhanced by the incorporation of photografted PALF into the matrix.

Downloads

Download data is not yet available.

References

SIAKENG, Ramengmawii, JAWAID, Mohammad, ARIFFIN, Hidayah, SAPUAN, S.M. Mechanical, dynamic, and thermomechanical properties of coir/pineapple leaf fiber reinforced polylactic acid hybrid biocomposites. Polymer Composites, 2019, 40(5), 2000–2011, doi: 10.1002/pc.24978. DOI: https://doi.org/10.1002/pc.24978

SOOD, Mohit, DWIVEDI, Gaurav. Effect of fiber treatment on flexural properties of natural fiber reinforced composites: a review. Egyptian Journal of Petroleum, 2018, 27(4), 775–783, doi: 10.1016/j.ejpe.2017.11.005. DOI: https://doi.org/10.1016/j.ejpe.2017.11.005

OUSHABI, A., SAIR, S., OUDRHIRI HASSANI, F., ABBOUD, Y., TANANE, O., EL BOUARI, A. The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibers (DPFs): study of the interface of DPF–polyurethane composite. South African Journal of Chemical Engineering, 2017, 23, 116–123, doi: 10.1016/j.sajce.2017.04.005. DOI: https://doi.org/10.1016/j.sajce.2017.04.005

PICKERING, K.L., ARUAN EFENDY, M.G., LE, T.M. A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing, 2016, 83, 98–112, doi: 10.1016/j.compositesa.2015.08.038. DOI: https://doi.org/10.1016/j.compositesa.2015.08.038

MOHAMMED, L., ANSARI, M.N.M., PUA, G., JAWAID, M., SAIFUL ISLAM, M. A review on natural fiber reinforced polymer composite and its applications. International Journal of Polymer Science, 2015, 2015, 1–15, doi: 10.1155/2015/243947. DOI: https://doi.org/10.1155/2015/243947

ALI, A., SHAKER, K., NAWAB, Y., JABBAR, M., HUSSAIN, T., MILITKY, J., BAHETI, V. Hydrophobic treatment of natural fibers and their composites - a review. Journal of Industrial Textiles, 2018, 47(8), 2153–2183, doi: 10.1177%2F1528083716654468. DOI: https://doi.org/10.1177/1528083716654468

FARUK, O., BLEDZKI, A.K., FINK, H.-P., SAIN, M. Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science, 2012, 37(11), 1552–1596, doi: 10.1016/j.progpolymsci.2012.04.003. DOI: https://doi.org/10.1016/j.progpolymsci.2012.04.003

KIRUTHIKA, A.V. A review on physico-mechanical properties of bast fibre reinforced polymer composites. Journal of Building Engineering, 2017, 9, 91–99, doi: 10.1016/j.jobe.2016.12.003. DOI: https://doi.org/10.1016/j.jobe.2016.12.003

RAMESH, M., PALANIKUMAR, K., HEMACHANDRA REDDY, K. Plant fibre based bio-composites: sustainable and renewable green materials. Renewable and Sustainable Energy Reviews, 2017, 79, 558–584, doi: 10.1016/j.rser.2017.05.094. DOI: https://doi.org/10.1016/j.rser.2017.05.094

KAEWPIROM, S., WORRARAT, C. Preparation and properties of pineapple leaf fiber reinforced poly (lactic acid) green composites. Fibers and Polymers, 2014, 15(7), 1469–1477, doi: 10.1007/s12221-014-1469-0. DOI: https://doi.org/10.1007/s12221-014-1469-0

HUDA, Masud S., DRZAL, Lawrence T., MOHANTY, Amar K., MISRA, Manjusri. Effect of chemical modifications of the pineapple leaf fiber surfaces on the interfacial and mechanical properties of laminated biocomposites. Composite Interfaces, 2008, 15(2-3), 169–191, doi: 10.1163/156855408783810920. DOI: https://doi.org/10.1163/156855408783810920

RAHMAN, H., ALIMUZZAMAN, S., SAYEED, M.M.A., KHAN, R.A. Effect of gamma radiation on mechanical properties of pineapple leaf fiber (PALF)-reinforced low-density polyethylene (LDPE) composites. International Journal of Plastics Technology, 2019, 23(2), 229–238, doi: 10.1007/s12588-019-09253-4. DOI: https://doi.org/10.1007/s12588-019-09253-4

MITTAL, M., CHAUDHARY, R. Experimental investigation on the mechanical properties and water absorption behavior of randomly oriented short pineapple/coir fiber-reinforced hybrid epoxy composites. Materials Research Express, 2018, 6(1), 015313, doi: 10.1088/2053-1591/aae944. DOI: https://doi.org/10.1088/2053-1591/aae944

ASIM, M., ABDAN, K., JAWAID, M., NASIR, M., DASHTIZADEH, Z., ISHAK, M.R., & HOQUE, M.E. A review on pineapple leaves fibre and its composites. International Journal of Polymer Science, 2015, 2015, 1–16, doi: 10.1155/2015/950567. DOI: https://doi.org/10.1155/2015/950567

HUJURI, U., CHATTOPADHAY, S.K., UPPALURI, R., GHOSHAL, A.K. Effect of maleic anhydride grafted polypropylene on the mechanical and morphological properties of chemically modified short‐pineapple‐leaf‐fiber‐reinforced polypropylene composites. Journal of Applied Polymer Science, 2008, 107(3), 1507–1516, doi: 10.1002/app.27156. DOI: https://doi.org/10.1002/app.27156

NAJEEB, M.I., SULTAN, M.T.H., ANDOU, Y., SHAH, A.U., EKSILER, K., JAWAID, M., ARIFFIN, A.H. Characterization of silane treated Malaysian Yankee Pineapple AC6 leaf fiber (PALF) towards industrial applications. Journal of Materials Research and Technology, 2020, 9(3), 3128–3139, doi: 10.1016/j.jmrt.2020.01.058. DOI: https://doi.org/10.1016/j.jmrt.2020.01.058

KESHK, S., SUWINARTI, W., SAMESHIMA, K. Physicochemical characterization of different treatment sequences on kenaf bast fiber. Carbohydrate Polymers, 2006, 65(2), 202–206, doi: 10.1016/j.carbpol.2006.01.005. DOI: https://doi.org/10.1016/j.carbpol.2006.01.005

ZAMAN, H.U., KHAN, M.A., KHAN, R.A., SHARMIN, N. Effect of chemical modifications on the performance of biodegradable photocured coir fiber. Fibers and Polymers, 2011, 12(6), 727–733, doi: 10.1007/s12221-011-0727-7. DOI: https://doi.org/10.1007/s12221-011-0727-7

GUL-E-NOOR, F., KHAN, M.A., GHOSHAL, S., KHAN, R.A., MAZID, R.A., SARWARUDDIN CHOWDHURY, A.M. Effect of urea on the mechanical properties of gelatin films photocured with 2-ethylhexyl acrylate. Journal of Polymers and the Environment, 2010, 18(3), 224–230, doi: 10.1007/s10924-010-0172-5. DOI: https://doi.org/10.1007/s10924-010-0172-5

ZAMAN, H.U., KHAN, M.A., KHAN, R.A. Effect of nonionizing radiation on the physicomechanical properties of banana fiber/pp composites with HEMA. Polymer composites, 2012, 33(8), 1424–1431, doi: 10.1002/pc.22269.

SULTANA, S., KHAN, R.A., KHAN, M.A., ZAMAN, H.U., SHAHRUZZAMAN, M., BANU, P., NURUZZAMAN KHAN, M., MUSTAFA, A.I. Preparation and mechanical characterization of gelatin-based films using 2-hydroxyethyl methacrylate cured by UV radiation. Polymer-Plastics Technology and Engineering, 2010, 49(6), 560–566, doi: 10.1080/03602551003652680. DOI: https://doi.org/10.1080/03602551003652680

ZAMAN, H.U., BEG, M.D.H., KHAN, M.A., KHAN, R.A. A comparative study of gamma and ultraviolet radiation on gelatin film with 2-ethylhexyl acrylate. Journal of Adhesion Science and Technology, 2013, 27(24), 2653–2665, doi: 10.1080/01694243.2013.799029. DOI: https://doi.org/10.1080/01694243.2013.799029

ZAMAN, H.U., KHAN, M.A., KHAN, R.A. Improvement of physicomechanical properties of grafted coir fiber with ethyleneglycol dimethacrylate: effect of UV radiation. Journal of Polymer Engineering, 2012, 32(2), 135–141, doi: 10.1515/polyeng-2011-0131. DOI: https://doi.org/10.1515/polyeng-2011-0131

KHAN, R.A., SALMIERI, S., DUSSAULT, D., TUFENKJI, N., URIBE-CALDERON, J., KAMAL, M.R., SAFRANY, A., LACROIX, M. Preparation and thermo-mechanical characterization of chitosan loaded methylcellulose-based biodegradable films: Effects of gamma radiation. Journal of Polymers and the Environment, 2012, 20(1), 43–52, doi: 10.1007/s10924-011-0336-y. DOI: https://doi.org/10.1007/s10924-011-0336-y

ZAMAN, H.U., KHAN, R.A., KHAN, M.A. Effects of surface pretreatment on the mechanical and dielectric properties of photocuring jute fibers. International Journal of Polymeric Materials, 2012, 61(9), 723–736, doi: 10.1080/00914037.2011.610043.

ZAMAN, H.U., KHAN, M.A., KHAN, R.A. Effect of nonionizing radiation on the physicomechanical properties of banana fiber/pp composites with HEMA. Polymer composites, 2012, 33(8), 1424–1431, doi: 10.1002/pc.22269. DOI: https://doi.org/10.1002/pc.22269

ROY, J.K., AKTER, N., ZAMAN, H.U., ASHRAF, K., SULTANA, S., SHAHRUZZAMAN, N.K., RAHMAN, M.A., ISLAM, T., KHAN, M.A., KHAN, R.A. Preparation and properties of coir fiber-reinforced ethylene glycol dimethacrylate-based composite. Journal of Thermoplastic Composite Materials, 2014, 27(1), 35–51, doi: 10.1177%2F0892705712439568. DOI: https://doi.org/10.1177/0892705712439568

ZAMAN, H.U., KHAN, R.A., KHAN, M.A., DALOUR HOSSEN BEG, M. Physico-mechanical and degradation properties of biodegradable photografted coir fiber with acrylic monomers. Polymer Bulletin, 2013, 70(8), 2277–2290, doi: 10.1007/s00289-013-0950-z. DOI: https://doi.org/10.1007/s00289-013-0950-z

KHAN, M.A., MASUDUL HASSAN, M., DRAZAL, L.T. Effect of 2-hydroxyethyl methacrylate (HEMA) on the mechanical and thermal properties of jute-polycarbonate composite. Composites Part A: Applied Science and Manufacturing, 2005, 36(1), 71–81, doi: 10.1016/j.compositesa.2004.06.027. DOI: https://doi.org/10.1016/S1359-835X(04)00178-2

MIZANUR RAHMAN, M., AHMED, F., CHOWDHURY, Z.Z., SARWARUDDIN CHOWDHURY, A.M., KHAN, M.A. Enhanced physico-mechanical properties of EGDMA treated locally produced jute clothes by thermal curing method. Polymer-Plastics Technology and Engineering, 2007, 46(7), 713–720, doi: 10.1080/15583720701271625. DOI: https://doi.org/10.1080/15583720701271625

ZAMAN, H.U., KHAN, R.A., KHAN, M.A. Effects of surface pretreatment on the mechanical and dielectric properties of photocuring jute fibers. International Journal of Polymeric Materials, 2012, 61(9), 723–736, doi: 10.1080/00914037.2011.610043. DOI: https://doi.org/10.1080/00914037.2011.610043

ZUBER, M., ZIA, K.M., BHATTI, I.A., ALI, Z., ARSHAD, M.U., SAIF, M.J. Modification of cellulosic fibers by UV-irradiation. Part II: after treatments effects. International Journal of Biological Macromolecules, 2012, 51(5), 743–748, doi: 10.1016/j.ijbiomac.2012.07.001. DOI: https://doi.org/10.1016/j.ijbiomac.2012.07.001

MASUDUL HASSAN, M., RABIUL ISLAM, M., KHAN, Mubarak A. Effect of additives on the improvement of mechanical and degradable properties of photografted jute yarn with acrylamide. Journal of Polymers and the Environment, 2002, 10(4), 139–145, doi: 10.1023/A:1021191920387. DOI: https://doi.org/10.1023/A:1021191920387

DE ROSA, I.M., KENNY, J.M., PUGLIA, D., SANTULLI, C., SARASINI, F. Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Composites Science and Technology, 2010, 70(1), 116–122, doi: 10.1016/j.compscitech.2009.09.013. DOI: https://doi.org/10.1016/j.compscitech.2009.09.013

FORTUNATI, E., PUGLIA, D., MONTI, M., SANTULLI, C., MANIRUZZAMAN, M., FORESTI, M. L., VAZQUEZ, J., KENNY, J. M. Okra (Abelmoschus esculentus) fibre based PLA composites: mechanical behaviour and biodegradation. Journal of Polymers and the Environment, 2013, 21(3), 726–737, doi: 10.1007/s10924-013-0571-5. DOI: https://doi.org/10.1007/s10924-013-0571-5

Downloads

Published

2021-11-04

Issue

Section

Scientific article

How to Cite

Rahman, A. N. M. M., Alimuzzaman, S., & Khan, R. A. (2021). Performance Evaluation of PLA Based Biocomposites Reinforced with Photografted PALF. Tekstilec, 64(3), 230-246. https://doi.org/10.14502/Tekstilec2021.64.230-246

Similar Articles

1-10 of 53

You may also start an advanced similarity search for this article.