Basic Parameters of Medical Textile Materials for Removal and Retention of Exudate from Wounds


  • Mykola Riabchykov Lutsk National Technical University, Lvivska street, 75, Lutsk, Ukraine Author
  • Liudmyla Nazarchuk Lutsk National Technical University, Lvivska street, 75, Lutsk, Ukraine Author
  • Oksana Tkachuk Lutsk National Technical University, Lvivska street, 75, Lutsk, Ukraine Author



textile medical materials, diffusion coefficient, nonlinear equation, removal of exudate


The article focuses on predicting the properties of textile materials intended for the treatment of wounds. The main requirements for medical textile materials for liquid transportation were identified. Exudate from wounds and therapeutic fluids from a dressing must move through material with the necessary efficiency. This ensures that unwanted substances are removed from the wound and the necessary moisture is maintained. These requirements can be provided using a mathematical model of the process. Such a model can be substantiated by solving a non-linear differential diffusion equation. For this purpose, the function of changing the moisture content inside a textile material was approximated using a polynomial function that satisfies the boundary conditions. This approximation made it possible to reduce the problem to the solution of an ordinary differential equation with respect to time. The obtained analytical solution of the change in moisture content with respect to time and coordinate includes two diffusion constants. The results of macro-experiments, together with analytical results, made it possible to determine the diffusion coefficient and the nonlinearity coefficient in an explicit form. The results made it possible to predict the moisture content at a given point of textile material at any given time, the total amount of absorbed liquid and the intensity of absorption. The resulting function can recommend the geometric and physical parameters of medical textile materials for the treatment of wounds with a given intensity of exudate sorption.


Download data is not yet available.


HOLLOWAY, S., HARDING, G.K. Wound dressings. Surgery, 2022, 40(1), 25–32, doi: 10.1016/j.mpsur.2021.11.002. DOI:

RUONAN, D., BAOLIN, G. Smart wound dressings for wound healing. Nanotoday, 2021, 40, 1–22, doi: 10.1016/j.nantod.2021.101290. DOI:

RIABCHYKOV, N., VLASENKO, V., ARABULI, S. Linear mathematical model of water uptake perpendicular to fabric plane. Vlakna a textile, 2011, 18(2), 24–30.

SCHUTSKAYA, G., SUPRUN, N. Discrete three-dimensional model of moisture spreading in textile materials. Vlákna a textil, 2016, 23(2), 31–36.

LUO, B., XIAO, Y., JIANG, M., WANG, L., GE, Y., ZHENG, M. Successful management of exudate and odor using a pouch system in a patient with malignant facial wound: a case report. Asia-Pacific Journal of Oncology Nursing, 2022, 9(4), 236–241, doi: 10.1016/j.apjon.2022.02.006. DOI:

LI, Y., ZHANG, Y., WANG, Y., YU, K., HU, E., LU, F., SHANG, S., XIE, R., LAN, G. Regulating wound moisture for accelerated healing: A strategy for the continuous drainage of wound exudates by mimicking plant transpiration. Chemical Engineering Journal, 2022, 429, 1–13, doi: 10.1016/j.cej.2021.131964. DOI:

PICKLES, S., McALLISTER, E., McCULLAGH, G., NIEROBA, T. J. Quality improvement evaluation of postoperative wound dressings in orthopaedic patients. International Journal of Orthopaedic and Trauma Nursing, 2022, 45, 1–8, doi: 10.1016/j.ijotn.2022.100922. DOI:

WOJCIK, M., KAZIMIERCZAK, P., BENKO, A., PALKA, K., VIVCHARENKO, V., PRZEKORA, A. Superabsorbent curdlan-based foam dressings with typical hydrocolloids properties for highly exuding wound management. Materials Science and Engineering: C, 2021, 124, 1–16, doi: 10.1016/j.msec.2021.112068. DOI:

QI, L., OU, K., HOU, Y., YUAN, P., YU, W., LI, X., WANG, B., HE, J., CUI, S., CHEN, X. Unidirectional water-transport antibacterial trilayered nanofiber-based wound dressings induced by hydrophilic-hydrophobic gradient and self-pumping effects. Materials & Design, 2021, 201, 1–12, doi: 10.1016/j.matdes.2021.109461. DOI:

RAEPSAET, C., ALVES, P., CULLEN, B., GEFEN, A., LÁZARO-MARTÍNEZ, J.L., LEV-TOV, H., NAJAFI, B., SA,NTAMARIA, N., SHARPE, A., SWANSON, T., WOO, K., BEECKMAN, D. Clinical research on the use of bordered foam dressings in the treatment of complex wounds: a systematic review of reported outcomes and applied measurement instruments. Journal of Tissue Viability, 2022, 31(3), 514–522, doi: 10.1016/j.jtv.2022.05.005. DOI:

LAURANO, R., BOFFITO, M., CIARDELLI, G., CHIONO, V. Wound dressing products: a translational investigation from the bench to the market. Engineered Regeneration, 2022, 3(2), 182–200, doi: 10.1016/j.engreg.2022.04.002. DOI:

SINHA, A., STAVRAKIS, K.A, STOJANOVIĆ, G.M. Textile-based electrochemical sensors and their applications. Talanta, 2022, 244, 1–16, doi: 10.1016/j.talanta.2022.123425. DOI:

JIANG, C., WANG, K., LIU, Y., ZHANG, C., WANG, B. Textile-based sandwich scaffold using wet electrospun yarns for skin tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 119, 1–9, doi: 10.1016/j.jmbbm.2021.104499. DOI:

PIRONTI, C., MOTTA, O., PROTO, A. Development of a new vapour phase methodology for textiles disinfection. Cleaner Engineering and Technology, 2021, 4, 1–7, doi: 10.1016/j.clet.2021.100170. DOI:

BENGALLI, R., COLANTUONI, A., PERELSHTEIN, I., GEDANKEN, A., COLLINI, M., MANTECCA, P., FIANDRA, L. In vitro skin toxicity of CuO and ZnO nanoparticles: Application in the safety assessment of antimicrobial coated textiles. NanoImpact, 2021, 2021, 1–11, doi: 10.1016/j.impact.2020.100282. DOI:

RIABCHYKOV, M., SYCHOV, Y., ALEKSZNDROV, O., NIKULINA, A. Bacteriostatic properties of medical textiles treated with nanomaterials based on Fe2O3. IOP Conference Series: Materials Science and Engineering, 2021, 1031(1), 1–6, doi: 10.1088/1757-899X/1031/1/012036. DOI:

DAI, J., DIAO, Y. Numerical analysis of transient coupled heat and moisture transfer in textile drying with porous relative impact jet. Applied Thermal Engineering, 2022, 212, 1–12, doi: 10.1016/j.applthermaleng.2022.118613. DOI:

LAN, X., WANG, Y., PENG, J., SI, Y., REN, J., DING, B., LI, B. Designing heat transfer pathways for advanced thermoregulatory textiles. Materials Today Physics, 2021, 17, 1–28, doi: 10.1016/j.mtphys.2021.100342. DOI:

LIN, J., CHEN, Q., HUANG, X., YAN, Z., LIN, X., YE, W., ARCADIO, S., LUIS, P., BI, J., VAN DER BRUGGEN, B., ZHAO, S. Integrated loose nanofiltration-electrodialysis process for sustainable resource extraction from high-salinity textile wastewater. Journal of Hazardous Materials, 2021, 419, 1–9, doi: 10.1016/j.jhazmat.2021.126505. DOI:

TIAN, Y., HUANG, X., CHENG, Y., NIU, Y., MA, J., ZHAO, Y., KOU, X., KE, Q. Applications of adhesives in textiles: a review. European Polymer Journal, 2022, 167, 1–15, doi: 10.1016/j.eurpolymj.2022.111089. DOI:

KESSENTINI, R., KLINKOVA, O., TAWFIQ, I., HADDAR, M. Modeling the moisture diffusion and hygroscopic swelling of a textile reinforced conveyor belt. Polymer Testing, 2019, 75, 159–166, doi: 10.1016/j.polymertesting.2019.01.013. DOI:

SINCHUK, Y., PANNIER, Y., ANTORANZ-GONZALEZ, R., GIGLIOTTI, M. Analysis of moisture diffusion induced stress in carbon/epoxy 3D textile composite materials with voids by µ-CT based Finite Element Models. Composite Structures, 2019, 212, 561–570, doi: 10.1016/j.compstruct.2018.12.041. DOI:

ABDELRAHMAN, M.A.E., MUSTAFAINC, ABDO, N., MOBARAK, M. New exact solutions for the reaction-diffusion equation in mathematical physics. Journal of Ocean Engineering and Science, 2022, in press, doi: 10.1016/j.joes.2022.05.006. DOI:

ZHANG, Q., ZHANG, J., SUN, Z. Optimal convergence rate of the explicit Euler method for convection–diffusion equations. Applied Mathematics Letters, 2022, 131, 1–10, doi: 10.1016/j.aml.2022.108048. DOI:

LIU, T. Parameter estimation with the multigrid-homotopy method for a nonlinear diffusion equation. Journal of Computational and Applied Mathematics, 2022, 413, 1–14, doi: 10.1016/ DOI:

RIABCHYKOV, M., ALEXANDROV, A., SYCHOV, Y., POPOVA, T., NECHIPOR, S. Magnetic nanotechnology in the production of foamed textile materials for medical purposes. Fibres and Textiles, 2021, 28(3), 66–71,






Scientific article

How to Cite

Riabchykov, M., Nazarchuk, L., & Tkachuk, O. (2022). Basic Parameters of Medical Textile Materials for Removal and Retention of Exudate from Wounds. Tekstilec, 65(4), 268-277.

Similar Articles

1-10 of 79

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)