Basic Parameters of Medical Textile Materials for Removal and Retention of Exudate from Wounds

Authors

  • Mykola Riabchykov Lutsk National Technical University, Lvivska street, 75, Lutsk, Ukraine https://orcid.org/0000-0002-9382-7562
  • Liudmyla Nazarchuk Lutsk National Technical University, Lvivska street, 75, Lutsk, Ukraine
  • Oksana Tkachuk Lutsk National Technical University, Lvivska street, 75, Lutsk, Ukraine

DOI:

https://doi.org/10.14502/tekstilec.65.2022064

Keywords:

textile medical materials, diffusion coefficient, nonlinear equation, removal of exudate

Abstract

The article focuses on predicting the properties of textile materials intended for the treatment of wounds. The main requirements for medical textile materials for liquid transportation were identified. Exudate from wounds and therapeutic fluids from a dressing must move through material with the necessary efficiency. This ensures that unwanted substances are removed from the wound and the necessary moisture is maintained. These requirements can be provided using a mathematical model of the process. Such a model can be substantiated by solving a non-linear differential diffusion equation. For this purpose, the function of changing the moisture content inside a textile material was approximated using a polynomial function that satisfies the boundary conditions. This approximation made it possible to reduce the problem to the solution of an ordinary differential equation with respect to time. The obtained analytical solution of the change in moisture content with respect to time and coordinate includes two diffusion constants. The results of macro-experiments, together with analytical results, made it possible to determine the diffusion coefficient and the nonlinearity coefficient in an explicit form. The results made it possible to predict the moisture content at a given point of textile material at any given time, the total amount of absorbed liquid and the intensity of absorption. The resulting function can recommend the geometric and physical parameters of medical textile materials for the treatment of wounds with a given intensity of exudate sorption.

References

HOLLOWAY, S., HARDING, G.K. Wound dressings. Surgery, 2022, 40(1), 25–32, doi: 10.1016/j.mpsur.2021.11.002. DOI: https://doi.org/10.1016/j.mpsur.2021.11.002

RUONAN, D., BAOLIN, G. Smart wound dressings for wound healing. Nanotoday, 2021, 40, 1–22, doi: 10.1016/j.nantod.2021.101290. DOI: https://doi.org/10.1016/j.nantod.2021.101290

RIABCHYKOV, N., VLASENKO, V., ARABULI, S. Linear mathematical model of water uptake perpendicular to fabric plane. Vlakna a textile, 2011, 18(2), 24–30.

SCHUTSKAYA, G., SUPRUN, N. Discrete three-dimensional model of moisture spreading in textile materials. Vlákna a textil, 2016, 23(2), 31–36.

LUO, B., XIAO, Y., JIANG, M., WANG, L., GE, Y., ZHENG, M. Successful management of exudate and odor using a pouch system in a patient with malignant facial wound: a case report. Asia-Pacific Journal of Oncology Nursing, 2022, 9(4), 236–241, doi: 10.1016/j.apjon.2022.02.006. DOI: https://doi.org/10.1016/j.apjon.2022.02.006

LI, Y., ZHANG, Y., WANG, Y., YU, K., HU, E., LU, F., SHANG, S., XIE, R., LAN, G. Regulating wound moisture for accelerated healing: A strategy for the continuous drainage of wound exudates by mimicking plant transpiration. Chemical Engineering Journal, 2022, 429, 1–13, doi: 10.1016/j.cej.2021.131964. DOI: https://doi.org/10.1016/j.cej.2021.131964

PICKLES, S., McALLISTER, E., McCULLAGH, G., NIEROBA, T. J. Quality improvement evaluation of postoperative wound dressings in orthopaedic patients. International Journal of Orthopaedic and Trauma Nursing, 2022, 45, 1–8, doi: 10.1016/j.ijotn.2022.100922. DOI: https://doi.org/10.1016/j.ijotn.2022.100922

WOJCIK, M., KAZIMIERCZAK, P., BENKO, A., PALKA, K., VIVCHARENKO, V., PRZEKORA, A. Superabsorbent curdlan-based foam dressings with typical hydrocolloids properties for highly exuding wound management. Materials Science and Engineering: C, 2021, 124, 1–16, doi: 10.1016/j.msec.2021.112068. DOI: https://doi.org/10.1016/j.msec.2021.112068

QI, L., OU, K., HOU, Y., YUAN, P., YU, W., LI, X., WANG, B., HE, J., CUI, S., CHEN, X. Unidirectional water-transport antibacterial trilayered nanofiber-based wound dressings induced by hydrophilic-hydrophobic gradient and self-pumping effects. Materials & Design, 2021, 201, 1–12, doi: 10.1016/j.matdes.2021.109461. DOI: https://doi.org/10.1016/j.matdes.2021.109461

RAEPSAET, C., ALVES, P., CULLEN, B., GEFEN, A., LÁZARO-MARTÍNEZ, J.L., LEV-TOV, H., NAJAFI, B., SA,NTAMARIA, N., SHARPE, A., SWANSON, T., WOO, K., BEECKMAN, D. Clinical research on the use of bordered foam dressings in the treatment of complex wounds: a systematic review of reported outcomes and applied measurement instruments. Journal of Tissue Viability, 2022, 31(3), 514–522, doi: 10.1016/j.jtv.2022.05.005. DOI: https://doi.org/10.1016/j.jtv.2022.05.005

LAURANO, R., BOFFITO, M., CIARDELLI, G., CHIONO, V. Wound dressing products: a translational investigation from the bench to the market. Engineered Regeneration, 2022, 3(2), 182–200, doi: 10.1016/j.engreg.2022.04.002. DOI: https://doi.org/10.1016/j.engreg.2022.04.002

SINHA, A., STAVRAKIS, K.A, STOJANOVIĆ, G.M. Textile-based electrochemical sensors and their applications. Talanta, 2022, 244, 1–16, doi: 10.1016/j.talanta.2022.123425. DOI: https://doi.org/10.1016/j.talanta.2022.123425

JIANG, C., WANG, K., LIU, Y., ZHANG, C., WANG, B. Textile-based sandwich scaffold using wet electrospun yarns for skin tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 119, 1–9, doi: 10.1016/j.jmbbm.2021.104499. DOI: https://doi.org/10.1016/j.jmbbm.2021.104499

PIRONTI, C., MOTTA, O., PROTO, A. Development of a new vapour phase methodology for textiles disinfection. Cleaner Engineering and Technology, 2021, 4, 1–7, doi: 10.1016/j.clet.2021.100170. DOI: https://doi.org/10.1016/j.clet.2021.100170

BENGALLI, R., COLANTUONI, A., PERELSHTEIN, I., GEDANKEN, A., COLLINI, M., MANTECCA, P., FIANDRA, L. In vitro skin toxicity of CuO and ZnO nanoparticles: Application in the safety assessment of antimicrobial coated textiles. NanoImpact, 2021, 2021, 1–11, doi: 10.1016/j.impact.2020.100282. DOI: https://doi.org/10.1016/j.impact.2020.100282

RIABCHYKOV, M., SYCHOV, Y., ALEKSZNDROV, O., NIKULINA, A. Bacteriostatic properties of medical textiles treated with nanomaterials based on Fe2O3. IOP Conference Series: Materials Science and Engineering, 2021, 1031(1), 1–6, doi: 10.1088/1757-899X/1031/1/012036. DOI: https://doi.org/10.1088/1757-899X/1031/1/012036

DAI, J., DIAO, Y. Numerical analysis of transient coupled heat and moisture transfer in textile drying with porous relative impact jet. Applied Thermal Engineering, 2022, 212, 1–12, doi: 10.1016/j.applthermaleng.2022.118613. DOI: https://doi.org/10.1016/j.applthermaleng.2022.118613

LAN, X., WANG, Y., PENG, J., SI, Y., REN, J., DING, B., LI, B. Designing heat transfer pathways for advanced thermoregulatory textiles. Materials Today Physics, 2021, 17, 1–28, doi: 10.1016/j.mtphys.2021.100342. DOI: https://doi.org/10.1016/j.mtphys.2021.100342

LIN, J., CHEN, Q., HUANG, X., YAN, Z., LIN, X., YE, W., ARCADIO, S., LUIS, P., BI, J., VAN DER BRUGGEN, B., ZHAO, S. Integrated loose nanofiltration-electrodialysis process for sustainable resource extraction from high-salinity textile wastewater. Journal of Hazardous Materials, 2021, 419, 1–9, doi: 10.1016/j.jhazmat.2021.126505. DOI: https://doi.org/10.1016/j.jhazmat.2021.126505

TIAN, Y., HUANG, X., CHENG, Y., NIU, Y., MA, J., ZHAO, Y., KOU, X., KE, Q. Applications of adhesives in textiles: a review. European Polymer Journal, 2022, 167, 1–15, doi: 10.1016/j.eurpolymj.2022.111089. DOI: https://doi.org/10.1016/j.eurpolymj.2022.111089

KESSENTINI, R., KLINKOVA, O., TAWFIQ, I., HADDAR, M. Modeling the moisture diffusion and hygroscopic swelling of a textile reinforced conveyor belt. Polymer Testing, 2019, 75, 159–166, doi: 10.1016/j.polymertesting.2019.01.013. DOI: https://doi.org/10.1016/j.polymertesting.2019.01.013

SINCHUK, Y., PANNIER, Y., ANTORANZ-GONZALEZ, R., GIGLIOTTI, M. Analysis of moisture diffusion induced stress in carbon/epoxy 3D textile composite materials with voids by µ-CT based Finite Element Models. Composite Structures, 2019, 212, 561–570, doi: 10.1016/j.compstruct.2018.12.041. DOI: https://doi.org/10.1016/j.compstruct.2018.12.041

ABDELRAHMAN, M.A.E., MUSTAFAINC, ABDO, N., MOBARAK, M. New exact solutions for the reaction-diffusion equation in mathematical physics. Journal of Ocean Engineering and Science, 2022, in press, doi: 10.1016/j.joes.2022.05.006. DOI: https://doi.org/10.1016/j.joes.2022.05.006

ZHANG, Q., ZHANG, J., SUN, Z. Optimal convergence rate of the explicit Euler method for convection–diffusion equations. Applied Mathematics Letters, 2022, 131, 1–10, doi: 10.1016/j.aml.2022.108048. DOI: https://doi.org/10.1016/j.aml.2022.108048

LIU, T. Parameter estimation with the multigrid-homotopy method for a nonlinear diffusion equation. Journal of Computational and Applied Mathematics, 2022, 413, 1–14, doi: 10.1016/j.cam.2022.114393. DOI: https://doi.org/10.1016/j.cam.2022.114393

RIABCHYKOV, M., ALEXANDROV, A., SYCHOV, Y., POPOVA, T., NECHIPOR, S. Magnetic nanotechnology in the production of foamed textile materials for medical purposes. Fibres and Textiles, 2021, 28(3), 66–71, http://vat.ft.tul.cz/2021/3/VaT_2021_3_7.pdf.

Downloads

Published

2022-11-07

How to Cite

Riabchykov, M., Nazarchuk, L., & Tkachuk, O. (2022). Basic Parameters of Medical Textile Materials for Removal and Retention of Exudate from Wounds. Tekstilec, 65(4), 268–277. https://doi.org/10.14502/tekstilec.65.2022064

Issue

Section

Scientific article

Most read articles by the same author(s)