Use of Banana Peel in the Development of a Less Flammable Polyester Composite


  • Ferdausee Rahman Anannya BGMEA University of Fashion and Technology, Nishatnagar, Dhour, Dhaka 1230, Bangladesh Author
  • Farhana Afroz BGMEA University of Fashion and Technology, Nishatnagar, Dhour, Dhaka 1230, Bangladesh Author
  • Golam Kibria BGMEA University of Fashion and Technology, Nishatnagar, Dhour, Dhaka 1230, Bangladesh Author
  • Md. Lutfor Rahman Primeasia University, 12-Kemal Ataturk Avenue, Banani, Dhaka 1213, Bangladesh Author
  • Nasrin Jamine BGMEA University of Fashion and Technology, Nishatnagar, Dhour, Dhaka 1230, Bangladesh Author
  • Md. Arif Mahmud Ahsanullah University of Science and Technology, 141, 142 Love Road, Tejgaon Industrial Area, Dhaka 1208 , Bangladesh Author



tensile strength, viscosity, hydrophobicity, flame retardancy, char


This study attempted to produce a cheap polyester composite material using an agricultural waste banana peel in the structure. Banana fibre has been used in composites as reinforcements, but banana peel has never been used with polyester before. The possibility of improved thermal and flammability properties of a composite due to increased moisture in the structure, and the char-forming ability of the cellulosic part of banana peel or the production of highly flammable material due to the presence of carbohydrates in the structure were the assumptions. To tackle the second assumption, aluminium trihydrate (ATH) was added. The handmade composites showed a drastic drop in tensile strength from 38.02 MPa to 16.72 MPa due to a lack of chemical bonding between the constituents. The impact and flexural strength showed some improvement with the addition of banana peel, along with ATH, to record results of 10.92 kg/cm and 49 MPa, respectively, after the initial drop that occurred when only ATH was added. However, these results were still inferior to the properties of pure polyester. The results of flammability and thermal resistance matched the second assumption, as flame retardancy was kept under control by the presence of ATH. The absorbency properties remained almost unaffected.


Download data is not yet available.


RAMESH, M., DEEPA, C., KUMAR, L.R., SANJAY, M.R., SIENGCHIN, S. Life-cycle and environmental impact assessments on processing of plant fibres and its bio-composites: a critical review. Journal of Industrial Textiles, in press, doi: 10.1177/1528083720924730. DOI:

SANJAY, M.R., MADHU, P., JAWAID, M., SENTHAMARAIKANNAN, P., SENTHIL, S., PRADEEP, S. Characterization and properties of natural fiber polymer composites: a comprehensive review. Journal of Cleaner Production, 2018, 172, 566–581, doi: 10.1016/j.jclepro.2017.10.101. DOI:

VINOD, A., SANJAY, M.R., SUCHART, S., JYOTISHKUMAR, P. Renewable and sustainable biobased materials: an assessment on biofibers, biofilms, biopolymers and biocomposites. Journal of Cleaner Production, 2020, 258, 1–27, doi: 10.1016/j.jclepro.2020.120978. DOI:

MAACHE, M., BEZAZI, A., AMROUNE, S., SCARPA, F., DUFRESNE, A. Characterization of a novel natural cellulosic fiber from Juncus effusus L. Carbohydrate Polymers, 2017, 171, 163–172, doi: 10.1016/j.carbpol.2017.04.096. DOI:

TEKLU, T., WANGATIA, L.M., ALEMAYEHU, E. Effect of surface modification of sisal fibers on water absorption and mechanical properties of polyaniline composite. Polymer Composites, 2019, 40(S1), E46–E52, doi: 10.1002/pc.24462. DOI:

CHANG, B.P., MOHANTY, A. K., MISRA, M. Studies on durability of sustainable biobased composites: a review. RSC Advances, 2020, 10(31), 17955–17999, doi: 10.1039/C9RA09554C. DOI:

Crops and livestock products in 2020 [online]. FAO [accessed 4 December 2022]. Available on World Wide Web: <>.

FERRANTE, A., SANTULLI, C., SUMMERSCALES, J. Evaluation of tensile strength of fibers extracted from banana peels. Journal of Natural Fibers, 2020, 17(10), 1519–1531, doi: 10.1080/15440478.2019.1582000. DOI:

KHAWAS, P., DEKA, S. C. Comparative nutritional, functional, morphological, and diffractogram study on culinary banana (Musa ABB) peel at various stages of development. International Journal of Food Properties, 2016, 19(12), 2832–2853, doi: 10.1080/10942912.2016.1141296. DOI:

ANANNYA, F.R., MAHMUD, M.A. Developments in flame-retardant bio-composite material production. Advances in Civil Engineering Materials, 2019, 8(1), 9–22, doi: 10.1520/acem20180025. DOI:

MAHMUD, M.A., ANANNYA, F.R. Sugarcane bagasse - a source of cellulosic fiber for diverse applications. Heliyon, 2021, 7(8), e07771, doi: 10.1016/j.heliyon.2021.e07771. DOI:

ŠTĚPEK, J., DAOUST, H. Reinforcing fillers, reinforcing agents, and coupling agents. In Additives for Plastics. New York : Springer, 1983, 70–98, doi: 10.1007/978-1-4419-8481-4_5. DOI:

SAIN, M., PARK, S.H., SUHARA, F., LAW, S. Flame retardant and mechanical properties of natural fibre–PP composites containing magnesium hydroxide. Polymer Degradation and Stability, 83(2), 363–367, doi: 10.1016/S0141-3910(03)00280-5. DOI:

BAR, M., ALAGIRUSAMY, R., DAS, A. Flame retardant polymer composites. Fibers and Polymers, 2015, 16(4), 705–717, doi: 10.1007/s12221-015-0705-6. DOI:

REIS, J.M.L.D. Effect of temperature on the mechanical properties of polymer mortars. Materials Research, 2012, 15(4), 645–649, doi: 10.1590/S1516-14392012005000091. DOI:

ROTHON, R.N., HORNSBY, P.R. Flame retardant effects of magnesium hydroxide. Polymer Degradation and Stability, 1996, 54(2–3), 383–385, doi: 10.1016/s0141-3910(96)00067-5. DOI:

HORNSBY, P.R. The application of fire-retardant fillers for use in textile barrier materials. In Multifunctional Barriers for Flexible Structure. Edited by Sophie Duquesne, Carole Magniez and Giovanni Camino. Berlin : Springer, 2007, 3–22, 10.1007/978-3-540-71920-5_1. DOI:

CAMINO, G., COSTA, L., DI CORTEMIGLIA, M.L. Overview of fire retardant mechanisms. Polymer Degradation and Stability, 1991, 33(2), 131–154, doi: 10.1016/0141-3910(91)90014-I. DOI:

SCHINDLER, W.D., HAUSER, P.J. Chemical FInishing of Textiles. Cambridge : Woodhead, 2004. DOI:

RIGOLO, M., WOODHAMS, R.T. Basic magnesium carbonate flame retardants for polypropylene. Polymer Engineering & Science, 1992, 32(5), 327–334, doi: 10.1002/pen.760320505. DOI:

Fire Retardancy of Polymeric Materials. Edited by C.A. Wilkie and A.B. Morgan. Boca Raton: CRC Press, 2000.

HORNSBY, P.R., WATSON, C.L. A study of the mechanism of flame retardance and smoke suppression in polymers filled with magnesium hydroxide. Polymer Degradation and Stability, 1990, 30(1), 73–87, doi: 10.1016/0141-3910(90)90118-Q. DOI:

NAM, T.H., OGIHARA, S., TUNG, N.H., KOBAYASHI, S. Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly (butylene succinate) biodegradable composites. Composites Part B: Engineering, 2011, 42(6), 1648–1656, doi: 10.1016/j.compositesb.2011.04.001. DOI:

SANJAY, M.R., YOGESHA, B. Studies on hybridization effect of jute/kenaf/E-glass woven fabric epoxy composites for potential applications: effect of laminate stacking sequences. Journal of Industrial Textiles, 2018, 47(7), 1830–1848, doi: 10.1177/1528083717710713. DOI:

SINDHU, R., BINOD, P., PANDEY, A. Microbial poly-3-hydroxybutyrate and related copolymers. In Industrial Biorefineries & White Biotechnology. Edited by Ashok Pandey, Rainer Höfer and Christian Larroche. Elsevier, 2015, 575–605. DOI:

Mechanical testing of advanced fibre composites. Edited by J. M. Hodgkinson. Cambridge : Woodhead, 2000.

PAWELEC, K.M., WHITE, A.A., BEST, S.M. Properties and characterization of bone repair materials. In Bone Repair Biomaterials. Edited by Kendell M. Pawelec and Josep A. Planell. Cambridge : Woodhead Publishing, 2019, 65–102. DOI:

HILADO, C.J. Flammability Handbook for Plastics, 5th ed. Boca Raton : CRC Press, 1998. DOI:

KOURTIDES, D.A., GILWEE JR, W.J., PARKER, J.A. Thermochemical characterization of some thermally stable thermoplastic and thermoset polymers. Polymer Engineering & Science, 1979, 19(1), 24–29, doi: 10.1002/pen.760190105. DOI:

KARAK, N. Vegetable oil-based polymer composites. Oxford : Woodhead Publishing, 2012, 247–270. DOI:

CHIU, S.H., WANG, W.K. The dynamic flammability and toxicity of magnesium hydroxide filled intumescent fire retardant polypropylene. Journal of Applied Polymer Science, 1989, 67(6), 989–995, doi: 10.1002/(SICI)1097-4628(19980207)67:6<989::AID-APP4>3.0.CO;2-I. DOI:<989::AID-APP4>3.0.CO;2-I

MONTEIRO, S.N., TERRONES, L.A.H., D’ALMEIDA, J.R.M. Mechanical performance of coir fiber/polyester composites. Polymer Testing, 2008, 27(5), 591–595, doi: 10.1016/j.polymertesting.2008.03.003. DOI:

RAY, D., SARKAR, B.K., BOSE, N.R. Impact fatigue behaviour of vinylester resin matrix composites reinforced with alkali treated jute fibres. Composites Part A: applied Science and Manufacturing, 2002, 33(2), 233–241, doi: 10.1016/S1359-835X(01)00096-3. DOI:

WILSON, R., DINI, D., VAN WACHEM, B. The influence of surface roughness and adhesion on particle rolling. Powder Technology, 312, 321–333, doi: 10.1016/j.powtec.2017.01.080. DOI:

MOHD DOM, Z., MUJIANTO, L., AZHAR, A., MASAUDIN, S., SAMSUDIN, R. Physicochemical properties of banana peel powder in functional food products. Food Research, 2021, 5(1), 209–215, doi: 10.26656/fr.2017.5(S1).037. DOI:

GAÑÁN, P., MONDRAGON, I. Fique fiber-reinforced polyester composites: Effects of fiber surface treatments on mechanical behavior. Journal of Materials Science, 2004, 39(9), 3121–3128, doi: 10.1023/B:JMSC.0000025841.67124.c3. DOI:

HE, J., ZENG, W., SHI, M., LV, X., FAN, H., LEI, Z. Influence of expandable graphite on flame retardancy and thermal stability property of unsaturated polyester resins/organic magnesium hydroxide composites. Journal of Applied Polymer Science, 2020, 137(1), 47881, doi: 10.1002/app.47881. DOI:

LUTHRA, P., SINGH, R., KAPUR, G. S. Development of polypropylene/banana peel (treated and untreated) composites with and without compatibilizer and their studies. Materials Research Express, 2019, 6(9), 095313, doi: 10.1088/2053-1591/ab2eea. DOI:

CHEN, Z., JIANG, M., CHEN, Z., CHEN, T., YU, Y., JIANG, J. Preparation and characterization of a microencapsulated flame retardant and its flame-retardant mechanism in unsaturated polyester resins. Powder Technology, 354, 71–81, doi: 10.1016/j.powtec.2019.05.077. DOI:

JIANG, M., ZHANG, Y., YU, Y., ZHANG, Q., HUANG, B., CHEN, Z., JIANG, J. Flame retardancy of unsaturated polyester composites with modified ammonium polyphosphate, montmorillonite, and zinc borate. Journal of Applied Polymer Science, 2019, 136(11), 47180, doi: 10.1002/app.47180. DOI:

HILL, C.A.S., ABDUL KHALIL, H.P.S. Effect of fiber treatments on mechanical properties of coir or oil palm fiber reinforced polyester composites. Journal of Applied Polymer Science, 2000, 78(9), 1685–1697, doi: 10.1002/1097-4628(20001128)78:9<1685::AID-APP150>3.0.CO;2-U. DOI:<1685::AID-APP150>3.0.CO;2-U

CHEN, H., WEN, X., GUAN, Y., MIN, J., WEN, Y., YANG, H., TANG, T. Effect of particle size on the flame retardancy of poly (butylene succinate)/Mg(OH)2 composites. Fire and Materials, 2016, 40(8), 1090–1096, doi: 10.1002/fam. DOI:

AI, L., CHEN, S., YANG, L., LIU, P. Synergistic flame retardant effect of organic boron flame retardant and aluminum hydroxide on polyethylene. Fibers and Polymers, 2021, 22(2), 354–365, doi: 10.1007/s12221-021-9385-6. DOI:

LIU, L., ZHANG, H., SUN, L., KONG, Q., ZHANG, J. Flame-retardant effect of montmorillonite intercalation iron compounds in polypropylene/aluminum hydroxide composites system. Journal of Thermal Analysis and Calorimetry, 2016, 124(2), 807–814, doi: 10.1007/s10973-015-5213-9. DOI:

IQBAL, M.A., IQBAL, M.A., FEDEL, M. Fire retardancy of aluminum hydroxide reinforced flame retardant modified epoxy resin composite. Russian Journal of Applied Chemistry, 2018, 91(4), 680–686, doi: 10.1134/S1070427218040225. DOI:

PAN, Y., HAN, L., GUO, Z., FANG, Z. Improving the flame‐retardant efficiency of aluminum hydroxide with fullerene for high‐density polyethylene. Journal of Applied Polymer Science, 2017, 134(9), doi: 10.1002/app.44551. DOI:

PÉREZ, N., QI, X.-L., NIE, S., ACUÑA, P., CHEN, M.-J., WANG, D.-Y. Flame retardant polypropylene composites with low densities. Materials (Basel), 2019, 12(1), 1–11, doi: 10.3390/ma12010152. DOI:






Scientific article

How to Cite

Anannya, F. R., Afroz, F., Kibria, G., Rahman, M. L., Jamine, N., & Mahmud, M. A. (2022). Use of Banana Peel in the Development of a Less Flammable Polyester Composite. Tekstilec, 65(4), 278-297.

Similar Articles

11-20 of 25

You may also start an advanced similarity search for this article.