Use of Banana Peel in the Development of a Less Flammable Polyester Composite
DOI:
https://doi.org/10.14502/tekstilec.65.2022074Keywords:
tensile strength, viscosity, hydrophobicity, flame retardancy, charAbstract
This study attempted to produce a cheap polyester composite material using an agricultural waste banana peel in the structure. Banana fibre has been used in composites as reinforcements, but banana peel has never been used with polyester before. The possibility of improved thermal and flammability properties of a composite due to increased moisture in the structure, and the char-forming ability of the cellulosic part of banana peel or the production of highly flammable material due to the presence of carbohydrates in the structure were the assumptions. To tackle the second assumption, aluminium trihydrate (ATH) was added. The handmade composites showed a drastic drop in tensile strength from 38.02 MPa to 16.72 MPa due to a lack of chemical bonding between the constituents. The impact and flexural strength showed some improvement with the addition of banana peel, along with ATH, to record results of 10.92 kg/cm and 49 MPa, respectively, after the initial drop that occurred when only ATH was added. However, these results were still inferior to the properties of pure polyester. The results of flammability and thermal resistance matched the second assumption, as flame retardancy was kept under control by the presence of ATH. The absorbency properties remained almost unaffected.
Metrics
Downloads
References
RAMESH, M., DEEPA, C., KUMAR, L.R., SANJAY, M.R., SIENGCHIN, S. Life-cycle and environmental impact assessments on processing of plant fibres and its bio-composites: a critical review. Journal of Industrial Textiles, in press, doi: 10.1177/1528083720924730. DOI: https://doi.org/10.1177/1528083720924730
SANJAY, M.R., MADHU, P., JAWAID, M., SENTHAMARAIKANNAN, P., SENTHIL, S., PRADEEP, S. Characterization and properties of natural fiber polymer composites: a comprehensive review. Journal of Cleaner Production, 2018, 172, 566–581, doi: 10.1016/j.jclepro.2017.10.101. DOI: https://doi.org/10.1016/j.jclepro.2017.10.101
VINOD, A., SANJAY, M.R., SUCHART, S., JYOTISHKUMAR, P. Renewable and sustainable biobased materials: an assessment on biofibers, biofilms, biopolymers and biocomposites. Journal of Cleaner Production, 2020, 258, 1–27, doi: 10.1016/j.jclepro.2020.120978. DOI: https://doi.org/10.1016/j.jclepro.2020.120978
MAACHE, M., BEZAZI, A., AMROUNE, S., SCARPA, F., DUFRESNE, A. Characterization of a novel natural cellulosic fiber from Juncus effusus L. Carbohydrate Polymers, 2017, 171, 163–172, doi: 10.1016/j.carbpol.2017.04.096. DOI: https://doi.org/10.1016/j.carbpol.2017.04.096
TEKLU, T., WANGATIA, L.M., ALEMAYEHU, E. Effect of surface modification of sisal fibers on water absorption and mechanical properties of polyaniline composite. Polymer Composites, 2019, 40(S1), E46–E52, doi: 10.1002/pc.24462. DOI: https://doi.org/10.1002/pc.24462
CHANG, B.P., MOHANTY, A. K., MISRA, M. Studies on durability of sustainable biobased composites: a review. RSC Advances, 2020, 10(31), 17955–17999, doi: 10.1039/C9RA09554C. DOI: https://doi.org/10.1039/C9RA09554C
Crops and livestock products in 2020 [online]. FAO [accessed 4 December 2022]. Available on World Wide Web: <https://www.fao.org/faostat/en/#data/QCL>.
FERRANTE, A., SANTULLI, C., SUMMERSCALES, J. Evaluation of tensile strength of fibers extracted from banana peels. Journal of Natural Fibers, 2020, 17(10), 1519–1531, doi: 10.1080/15440478.2019.1582000. DOI: https://doi.org/10.1080/15440478.2019.1582000
KHAWAS, P., DEKA, S. C. Comparative nutritional, functional, morphological, and diffractogram study on culinary banana (Musa ABB) peel at various stages of development. International Journal of Food Properties, 2016, 19(12), 2832–2853, doi: 10.1080/10942912.2016.1141296. DOI: https://doi.org/10.1080/10942912.2016.1141296
ANANNYA, F.R., MAHMUD, M.A. Developments in flame-retardant bio-composite material production. Advances in Civil Engineering Materials, 2019, 8(1), 9–22, doi: 10.1520/acem20180025. DOI: https://doi.org/10.1520/ACEM20180025
MAHMUD, M.A., ANANNYA, F.R. Sugarcane bagasse - a source of cellulosic fiber for diverse applications. Heliyon, 2021, 7(8), e07771, doi: 10.1016/j.heliyon.2021.e07771. DOI: https://doi.org/10.1016/j.heliyon.2021.e07771
ŠTĚPEK, J., DAOUST, H. Reinforcing fillers, reinforcing agents, and coupling agents. In Additives for Plastics. New York : Springer, 1983, 70–98, doi: 10.1007/978-1-4419-8481-4_5. DOI: https://doi.org/10.1007/978-1-4419-8481-4_5
SAIN, M., PARK, S.H., SUHARA, F., LAW, S. Flame retardant and mechanical properties of natural fibre–PP composites containing magnesium hydroxide. Polymer Degradation and Stability, 83(2), 363–367, doi: 10.1016/S0141-3910(03)00280-5. DOI: https://doi.org/10.1016/S0141-3910(03)00280-5
BAR, M., ALAGIRUSAMY, R., DAS, A. Flame retardant polymer composites. Fibers and Polymers, 2015, 16(4), 705–717, doi: 10.1007/s12221-015-0705-6. DOI: https://doi.org/10.1007/s12221-015-0705-6
REIS, J.M.L.D. Effect of temperature on the mechanical properties of polymer mortars. Materials Research, 2012, 15(4), 645–649, doi: 10.1590/S1516-14392012005000091. DOI: https://doi.org/10.1590/S1516-14392012005000091
ROTHON, R.N., HORNSBY, P.R. Flame retardant effects of magnesium hydroxide. Polymer Degradation and Stability, 1996, 54(2–3), 383–385, doi: 10.1016/s0141-3910(96)00067-5. DOI: https://doi.org/10.1016/S0141-3910(96)00067-5
HORNSBY, P.R. The application of fire-retardant fillers for use in textile barrier materials. In Multifunctional Barriers for Flexible Structure. Edited by Sophie Duquesne, Carole Magniez and Giovanni Camino. Berlin : Springer, 2007, 3–22, 10.1007/978-3-540-71920-5_1. DOI: https://doi.org/10.1007/978-3-540-71920-5_1
CAMINO, G., COSTA, L., DI CORTEMIGLIA, M.L. Overview of fire retardant mechanisms. Polymer Degradation and Stability, 1991, 33(2), 131–154, doi: 10.1016/0141-3910(91)90014-I. DOI: https://doi.org/10.1016/0141-3910(91)90014-I
SCHINDLER, W.D., HAUSER, P.J. Chemical FInishing of Textiles. Cambridge : Woodhead, 2004. DOI: https://doi.org/10.1201/9781439823477
RIGOLO, M., WOODHAMS, R.T. Basic magnesium carbonate flame retardants for polypropylene. Polymer Engineering & Science, 1992, 32(5), 327–334, doi: 10.1002/pen.760320505. DOI: https://doi.org/10.1002/pen.760320505
Fire Retardancy of Polymeric Materials. Edited by C.A. Wilkie and A.B. Morgan. Boca Raton: CRC Press, 2000.
HORNSBY, P.R., WATSON, C.L. A study of the mechanism of flame retardance and smoke suppression in polymers filled with magnesium hydroxide. Polymer Degradation and Stability, 1990, 30(1), 73–87, doi: 10.1016/0141-3910(90)90118-Q. DOI: https://doi.org/10.1016/0141-3910(90)90118-Q
NAM, T.H., OGIHARA, S., TUNG, N.H., KOBAYASHI, S. Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly (butylene succinate) biodegradable composites. Composites Part B: Engineering, 2011, 42(6), 1648–1656, doi: 10.1016/j.compositesb.2011.04.001. DOI: https://doi.org/10.1016/j.compositesb.2011.04.001
SANJAY, M.R., YOGESHA, B. Studies on hybridization effect of jute/kenaf/E-glass woven fabric epoxy composites for potential applications: effect of laminate stacking sequences. Journal of Industrial Textiles, 2018, 47(7), 1830–1848, doi: 10.1177/1528083717710713. DOI: https://doi.org/10.1177/1528083717710713
SINDHU, R., BINOD, P., PANDEY, A. Microbial poly-3-hydroxybutyrate and related copolymers. In Industrial Biorefineries & White Biotechnology. Edited by Ashok Pandey, Rainer Höfer and Christian Larroche. Elsevier, 2015, 575–605. DOI: https://doi.org/10.1016/B978-0-444-63453-5.00019-7
Mechanical testing of advanced fibre composites. Edited by J. M. Hodgkinson. Cambridge : Woodhead, 2000.
PAWELEC, K.M., WHITE, A.A., BEST, S.M. Properties and characterization of bone repair materials. In Bone Repair Biomaterials. Edited by Kendell M. Pawelec and Josep A. Planell. Cambridge : Woodhead Publishing, 2019, 65–102. DOI: https://doi.org/10.1016/B978-0-08-102451-5.00004-4
HILADO, C.J. Flammability Handbook for Plastics, 5th ed. Boca Raton : CRC Press, 1998. DOI: https://doi.org/10.1201/9780585248684
KOURTIDES, D.A., GILWEE JR, W.J., PARKER, J.A. Thermochemical characterization of some thermally stable thermoplastic and thermoset polymers. Polymer Engineering & Science, 1979, 19(1), 24–29, doi: 10.1002/pen.760190105. DOI: https://doi.org/10.1002/pen.760190105
KARAK, N. Vegetable oil-based polymer composites. Oxford : Woodhead Publishing, 2012, 247–270. DOI: https://doi.org/10.1533/9780857097149.247
CHIU, S.H., WANG, W.K. The dynamic flammability and toxicity of magnesium hydroxide filled intumescent fire retardant polypropylene. Journal of Applied Polymer Science, 1989, 67(6), 989–995, doi: 10.1002/(SICI)1097-4628(19980207)67:6<989::AID-APP4>3.0.CO;2-I. DOI: https://doi.org/10.1002/(SICI)1097-4628(19980207)67:6<989::AID-APP4>3.0.CO;2-I
MONTEIRO, S.N., TERRONES, L.A.H., D’ALMEIDA, J.R.M. Mechanical performance of coir fiber/polyester composites. Polymer Testing, 2008, 27(5), 591–595, doi: 10.1016/j.polymertesting.2008.03.003. DOI: https://doi.org/10.1016/j.polymertesting.2008.03.003
RAY, D., SARKAR, B.K., BOSE, N.R. Impact fatigue behaviour of vinylester resin matrix composites reinforced with alkali treated jute fibres. Composites Part A: applied Science and Manufacturing, 2002, 33(2), 233–241, doi: 10.1016/S1359-835X(01)00096-3. DOI: https://doi.org/10.1016/S1359-835X(01)00096-3
WILSON, R., DINI, D., VAN WACHEM, B. The influence of surface roughness and adhesion on particle rolling. Powder Technology, 312, 321–333, doi: 10.1016/j.powtec.2017.01.080. DOI: https://doi.org/10.1016/j.powtec.2017.01.080
MOHD DOM, Z., MUJIANTO, L., AZHAR, A., MASAUDIN, S., SAMSUDIN, R. Physicochemical properties of banana peel powder in functional food products. Food Research, 2021, 5(1), 209–215, doi: 10.26656/fr.2017.5(S1).037. DOI: https://doi.org/10.26656/fr.2017.5(S1).037
GAÑÁN, P., MONDRAGON, I. Fique fiber-reinforced polyester composites: Effects of fiber surface treatments on mechanical behavior. Journal of Materials Science, 2004, 39(9), 3121–3128, doi: 10.1023/B:JMSC.0000025841.67124.c3. DOI: https://doi.org/10.1023/B:JMSC.0000025841.67124.c3
HE, J., ZENG, W., SHI, M., LV, X., FAN, H., LEI, Z. Influence of expandable graphite on flame retardancy and thermal stability property of unsaturated polyester resins/organic magnesium hydroxide composites. Journal of Applied Polymer Science, 2020, 137(1), 47881, doi: 10.1002/app.47881. DOI: https://doi.org/10.1002/app.47881
LUTHRA, P., SINGH, R., KAPUR, G. S. Development of polypropylene/banana peel (treated and untreated) composites with and without compatibilizer and their studies. Materials Research Express, 2019, 6(9), 095313, doi: 10.1088/2053-1591/ab2eea. DOI: https://doi.org/10.1088/2053-1591/ab2eea
CHEN, Z., JIANG, M., CHEN, Z., CHEN, T., YU, Y., JIANG, J. Preparation and characterization of a microencapsulated flame retardant and its flame-retardant mechanism in unsaturated polyester resins. Powder Technology, 354, 71–81, doi: 10.1016/j.powtec.2019.05.077. DOI: https://doi.org/10.1016/j.powtec.2019.05.077
JIANG, M., ZHANG, Y., YU, Y., ZHANG, Q., HUANG, B., CHEN, Z., JIANG, J. Flame retardancy of unsaturated polyester composites with modified ammonium polyphosphate, montmorillonite, and zinc borate. Journal of Applied Polymer Science, 2019, 136(11), 47180, doi: 10.1002/app.47180. DOI: https://doi.org/10.1002/app.47180
HILL, C.A.S., ABDUL KHALIL, H.P.S. Effect of fiber treatments on mechanical properties of coir or oil palm fiber reinforced polyester composites. Journal of Applied Polymer Science, 2000, 78(9), 1685–1697, doi: 10.1002/1097-4628(20001128)78:9<1685::AID-APP150>3.0.CO;2-U. DOI: https://doi.org/10.1002/1097-4628(20001128)78:9<1685::AID-APP150>3.0.CO;2-U
CHEN, H., WEN, X., GUAN, Y., MIN, J., WEN, Y., YANG, H., TANG, T. Effect of particle size on the flame retardancy of poly (butylene succinate)/Mg(OH)2 composites. Fire and Materials, 2016, 40(8), 1090–1096, doi: 10.1002/fam. DOI: https://doi.org/10.1002/fam.2355
AI, L., CHEN, S., YANG, L., LIU, P. Synergistic flame retardant effect of organic boron flame retardant and aluminum hydroxide on polyethylene. Fibers and Polymers, 2021, 22(2), 354–365, doi: 10.1007/s12221-021-9385-6. DOI: https://doi.org/10.1007/s12221-021-9385-6
LIU, L., ZHANG, H., SUN, L., KONG, Q., ZHANG, J. Flame-retardant effect of montmorillonite intercalation iron compounds in polypropylene/aluminum hydroxide composites system. Journal of Thermal Analysis and Calorimetry, 2016, 124(2), 807–814, doi: 10.1007/s10973-015-5213-9. DOI: https://doi.org/10.1007/s10973-015-5213-9
IQBAL, M.A., IQBAL, M.A., FEDEL, M. Fire retardancy of aluminum hydroxide reinforced flame retardant modified epoxy resin composite. Russian Journal of Applied Chemistry, 2018, 91(4), 680–686, doi: 10.1134/S1070427218040225. DOI: https://doi.org/10.1134/S1070427218040225
PAN, Y., HAN, L., GUO, Z., FANG, Z. Improving the flame‐retardant efficiency of aluminum hydroxide with fullerene for high‐density polyethylene. Journal of Applied Polymer Science, 2017, 134(9), doi: 10.1002/app.44551. DOI: https://doi.org/10.1002/app.44551
PÉREZ, N., QI, X.-L., NIE, S., ACUÑA, P., CHEN, M.-J., WANG, D.-Y. Flame retardant polypropylene composites with low densities. Materials (Basel), 2019, 12(1), 1–11, doi: 10.3390/ma12010152. DOI: https://doi.org/10.3390/ma12010152
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Ferdausee Rahman Anannya, Farhana Afroz, Golam Kibria, Md. Lutfor Rahman, Nasrin Jamine, Md. Arif Mahmud

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.