Characterization of PAN-TiO2 Nanofiber Mats and their Application as Front Electrodes for Dye-sensitized Solar Cells

Authors

  • Marius Dotter Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany Author https://orcid.org/0000-0001-8398-1809
  • Lion Lukas Placke Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany Author
  • Jan Lukas Storck Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany Author
  • Uwe Güth Department of Physical and Biophysical Chemistry (PC III), Faculty of Chemistry, Bielefeld University, 33615 Bielefeld, Germany Author

DOI:

https://doi.org/10.14502/tekstilec.65.2022081

Keywords:

dye-sensitized solar cells (DSSC), long-term stability, electrospinning, polyacrylonitrile (PAN), TiO2 nanoparticles

Abstract

In the context of the energy transition to renewables, the spotlight is on large systems connected to the power grid, but this also offers room for smaller, more specialized applications. Photovoltaics, in particular, offer the possibility of the self-sufficient supply of smaller electrical appliances on smaller scales. The idea of making previously unused surfaces usable is by no means new, and textiles such as backpacks, tent tarpaulins and other covers are particularly suitable for this purpose. In order to create a non-toxic and easily recyclable product, dye-sensitized solar cells (DSSC), which can be manufactured through electrospinning with a textile feel, are an attractive option here. Therefore, this paper investigates a needle electrospun nanofiber mat, whose spin solution contains polyacrylonitrile (PAN) dissolved in dimethyl sulfoxide (DMSO) as well es TiO2 nanoparticles. In addition to characterization, the nanofiber mat was dyed in a solution containing anthocyanins to later serve as a front electrode for a dye-sensitized solar cell. Although of lower efficiency, the DSSC provides stable results over two months of measurement.

Downloads

Download data is not yet available.

References

DRESSELHAUS, M.S., THOMAS, I.L. Alternative energy technologies. Nature, 2001, 414, 332–337, doi: 10.1038/35104599. DOI: https://doi.org/10.1038/35104599

Renewables 2020. Paris : OECD, 2020, doi: 10.1787/c74616c1-en. DOI: https://doi.org/10.1787/c74616c1-en

KOHN, S., WEHLAGE, D., JUHÁSZ JUNGER, I., EHRMANN, A. Electrospinning a dye-sensitized solar cell. Catalysts, 2019, 9(12), 1–9, doi: 10.3390/catal9120975. DOI: https://doi.org/10.3390/catal9120975

O'REGAN, B., GRÄTZEL, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353, 737–740, doi: 10.1038/353737a0. DOI: https://doi.org/10.1038/353737a0

MUÑOZ-GARCÍA, A.B., BENESPERI, I., BOSCHLOO, G., CONCEPCION, J.J., DELCAMP, J.H., GIBSON, E.A., MEYER, G.J., PAVONE, M., PETTERSSON, H., HAGFELDT, A., et al. Dye-sensitized solar cells strike back. Chemical Society Reviews, 2021, 50(22), 12450–12550, doi: 10.1039/D0CS01336F. DOI: https://doi.org/10.1039/D0CS01336F

SCHODEN, F., DOTTER, M., KNEFELKAMP, D., BLACHOWICZ, T., SCHWENZFEIER HELLKAMP, E. Review of state of the art recycling methods in the context of dye sensitized solar cells. Energies, 2021, 14(13), 1–12, doi: 10.3390/en14133741. DOI: https://doi.org/10.3390/en14133741

EHRMANN, A., BLACHOWICZ, T. Recent coating materials for textile-based solar cells. AIMS Materials Science, 2019, 6(2), 234–251, doi: 10.3934/matersci.2019.2.234. DOI: https://doi.org/10.3934/matersci.2019.2.234

GOSSEN, K., DOTTER, M., BROCKHAGEN, B., STORCK, J.L., EHRMANN, A. Long-term investigation of unsealed DSSCs with glycerol-based electrolytes of different compositions. AIMS Materials Science, 2022, 9(2), 283–296, doi: 10.3934/matersci.2022017. DOI: https://doi.org/10.3934/matersci.2022017

STORCK, J.L., DOTTER, M., BROCKHAGEN, B., GROTHE, T. Evaluation of novel glycerol/PEO gel polymer electrolytes for non-toxic dye-sensitized solar cells with natural dyes regarding long-term stability and reproducibility. Crystals, 2020, 10(12), 1–15, doi: 10.3390/cryst10121158. DOI: https://doi.org/10.3390/cryst10121158

DOTTER, M., STORCK, J.L., SURJAWIDJAJA, M., ADABRA, S., GROTHE, T. Investigation of the long-term stability of different polymers and their blends with PEO to produce gel polymer electrolytes for non-toxic dye-sensitized solar cells. Applied Sciences, 2021, 11(13), 1–14, doi: 10.3390/app11135834. DOI: https://doi.org/10.3390/app11135834

GROTHE, T., STORCK, J.L., DOTTER, M., EHRMANN, A. Impact of solid content in the electrospinning solution on the physical and chemical properties of polyacrylonitrile (PAN) nanofibrous mats. Tekstilec, 2020, 63(3), 225–232, doi: 10.14502/Tekstilec2020.63.225-232. DOI: https://doi.org/10.14502/Tekstilec2020.63.225-232

MAMUN, A., TRABELSI, M., KLÖCKER, M., SABANTINA, L., GROßERHODE, C., BLACHOWICZ, T., GRÖTSCH, G., CORNELIßEN, C., STREITENBERGER, A., EHRMANN, A. Electrospun nanofiber mats with embedded non-sintered TiO2 for dye-sensitized solar cells (DSSCs). Fibers, 2019, 7(7), 1–10, doi: 10.3390/fib7070060. DOI: https://doi.org/10.3390/fib7070060

JUHÁSZ JUNGER, I., GROSSERHODE, C., STORCK, J.L., KOHN, S., GRETHE, T., GRASSMANN, C., SCHWARZ-PFEIFFER, A., GRIMMELSMANN, N., MEISSNER, H., BLACHOWICZ, T., et al. Influence of graphite-coating methods on the DSSC performance. Optik, 2018, 174, 40–45, doi: 10.1016/j.ijleo.2018.08.041. DOI: https://doi.org/10.1016/j.ijleo.2018.08.041

UDOMRUNGKHAJORNCHAI, S., JUNGER, I.J., EHRMANN, A. Optimization of the TiO2 layer in DSSCs by a nonionic surfactant. Optik, 2020, 203, 163945, doi: 10.1016/j.ijleo.2019.163945. DOI: https://doi.org/10.1016/j.ijleo.2019.163945

GROTHE, T., WEHLAGE, D., BÖHM, T., REMCHE, A., EHRMANN, A. Needleless Electrospinning of PAN Nanofibre Mats. Tekstilec, 2017, 60(4), 290–295, doi: 10.14502/Tekstilec2017.60.290-295. DOI: https://doi.org/10.14502/Tekstilec2017.60.290-295

STORCK, J.L., GROTHE, T., MAMUN, A., SABANTINA, L., KLÖCKER, M., BLACHOWICZ, T., EHRMANN, A. Orientation of electrospun magnetic nanofibers near conductive areas. Materials, 2019, 13(1), 1–14, doi: 10.3390/ma13010047. DOI: https://doi.org/10.3390/ma13010047

LEE, S., KIM, J., KU, B.-C., KIM, J., JOH, H.-I. Structural evolution of polyacrylonitrile fibers in stabilization and carbonization. Advances in Chemical Engineering and Science, 2012, 2(2), 275–282, doi: 10.4236/aces.2012.22032. DOI: https://doi.org/10.4236/aces.2012.22032

KIM, H.M., CHAE, W.-P., CHANG, K.-W., CHUN, S., KIM, S., JEONG, Y., KANG, I.-K. Composite nanofiber mats consisting of hydroxyapatite and titania for biomedical applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2010, 94B(2), 380–387, doi: 10.1002/jbm.b.31664. DOI: https://doi.org/10.1002/jbm.b.31664

ALARIFI, I.M., ALHARBI, A., KHAN, W.S., SWINDLE, A., ASMATULU, R. Thermal, electrical and surface hydrophobic properties of electrospun polyacrylonitrile nanofibers for structural health monitoring. Materials, 2015, 8(10), 7017–7031, doi: 10.3390/ma8105356. DOI: https://doi.org/10.3390/ma8105356

GOLSHAN, M., OSFOURI, S., AZIN, R., JALALI, T., MOHEIMANI, N.R. Efficiency and stability improvement of natural dye‐sensitized solar cells using the electrospun composite of TiO2 nanofibres doped by the bio‐Ca nanoparticles. International Journal of Energy Research, 2022, 46(11), 15407–15418, doi: 10.1002/er.8242. DOI: https://doi.org/10.1002/er.8242

AL‐ALWANI, M.A.M., AL‐MASHAAN, A.B.S.A., ABDULLAH, M.F. Performance of the dye‐sensitized solar cells fabricated using natural dyes from Ixora coccinea flowers and Cymbopogon schoenanthus leaves as sensitizers. International Journal of Energy Research, 2019, 43(13), 7229–7239, doi: 10.1002/er.4747. DOI: https://doi.org/10.1002/er.4747

PRABAVATHY, N., SHALINI, S., BALASUNDARAPRABHU, R., VELAUTHAPILLAI, D., PRASANNA, S., BALAJI, G., MUTHUKUMARASAMY, N. Algal buffer layers for enhancing the efficiency of anthocyanins extracted from rose petals for natural dye-sensitized solar cell (DSSC). International Journal of Energy Research, 2018, 42(2), 790–801, doi: 10.1002/er.3866. DOI: https://doi.org/10.1002/er.3866

EKPUNOBI, U.E., OGBUEFI, S.I., EKPUNOBI, A.J. Dye pH effect on photoelectric parameters of natural photosensitizer pigment extracted from Alstonia boonei for dye‐sensitized solar cells. International Journal of Energy Research, 2022, 46(2), 1922–1933, doi: 10.1002/er.7307. DOI: https://doi.org/10.1002/er.7307

NIEN, Y.-H., WU, Y.-T., CHOU, J.-C., YANG, P.-H., HO, C.-S., LAI, C.-H., KUO, P.-Y., SYU, R.-H., ZHUANG, S.-W., CHEN, P.-F. Photovoltaic performance of dye-sensitized solar cells under low illumination by modification of a photoanode with ZnFe2O4/TiO2 nanofibers. IEEE Transactions on Nanotechnology, 2022, 21, 606–612, doi: 10.1109/TNANO.2022.3213278. DOI: https://doi.org/10.1109/TNANO.2022.3213278

STORCK, J.L., DOTTER, M., ADABRA, S., SURJAWIDJAJA, M., BROCKHAGEN, B., GROTHE, T. Long-term stability improvement of non-toxic dye-sensitized solar cells ia poly(ethylene oxide) gel electrolytes for future textile-based solar cells. Polymers, 2020, 12(12), 1–15, doi: 10.3390/polym12123035. DOI: https://doi.org/10.3390/polym12123035

Downloads

Published

2022-12-20

Issue

Section

Scientific article

How to Cite

Dotter, M., Placke, L. L., Storck, J. L., & Güth, U. (2022). Characterization of PAN-TiO2 Nanofiber Mats and their Application as Front Electrodes for Dye-sensitized Solar Cells. Tekstilec, 65(4), 298-306. https://doi.org/10.14502/tekstilec.65.2022081

Most read articles by the same author(s)