Karakterizacija PAN-TiO2 nanovlaknatih kopren in njihova uporaba kot sprednjih elektrod za elektrokemijske sončne celice

Avtorji

  • Marius Dotter Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany https://orcid.org/0000-0001-8398-1809
  • Lion Lukas Placke Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
  • Jan Lukas Storck Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
  • Uwe Güth Department of Physical and Biophysical Chemistry (PC III), Faculty of Chemistry, Bielefeld University, 33615 Bielefeld, Germany

DOI:

https://doi.org/10.14502/tekstilec.65.2022081

Ključne besede:

elektrokemijske sončne celice, dolgotrajna stabilnost, elektropredenje, poliakrilonitril (PAN), nanodelci TiO2

Povzetek

V okviru energetskega prehoda na obnovljive vire so v središču pozornosti veliki sistemi, povezani z električnim omrežjem, vendar pa je tu tudi prostor tudi za manjše, specializirane aplikacije. Predvsem fotovoltaika ponuja možnosti za samozadostno oskrbo manjših električnih naprav z manjšim obsegom. Zamisel o uporabi prej neizkoriščenih površin ni nova, za ta namen pa so še zlasti primerni izdelki iz tekstilij, kot so nahrbtniki, ponjave za šotore in druga pregrinjala. Za razvoj nestrupenega izdelka, ki ga je mogoče zlahka reciklirati, so tukaj privlačna možnost elektrokemijske sončne celice, ki jih je mogoče izdelati z elektropredenjem in ki imajo tekstilni otip. Zato je v tem članku raziskana nanovlaknata koprena, izdelana v enoigelnem postopku elektropredenja iz raztopine poliakrilonitrila (PAN), raztopljenega v dimetilsulfoksidu (DMSO), z dodatkom nanodelcev TiO2. Poleg karakterizacije je bila nanovlaknata koprena tudi barvana v raztopini antocianov, da bi bila pozneje uporabljena kot sprednja elektroda za elektrokemijsko sončno celico. Čeprav je manj učinkovita, pa je elektrokemijska elektroda pri dvomesečnem merjenju zagotovila stabilne rezultate.

Literatura

DRESSELHAUS, M.S., THOMAS, I.L. Alternative energy technologies. Nature, 2001, 414, 332–337, doi: 10.1038/35104599. DOI: https://doi.org/10.1038/35104599

Renewables 2020. Paris : OECD, 2020, doi: 10.1787/c74616c1-en. DOI: https://doi.org/10.1787/c74616c1-en

KOHN, S., WEHLAGE, D., JUHÁSZ JUNGER, I., EHRMANN, A. Electrospinning a dye-sensitized solar cell. Catalysts, 2019, 9(12), 1–9, doi: 10.3390/catal9120975. DOI: https://doi.org/10.3390/catal9120975

O'REGAN, B., GRÄTZEL, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353, 737–740, doi: 10.1038/353737a0. DOI: https://doi.org/10.1038/353737a0

MUÑOZ-GARCÍA, A.B., BENESPERI, I., BOSCHLOO, G., CONCEPCION, J.J., DELCAMP, J.H., GIBSON, E.A., MEYER, G.J., PAVONE, M., PETTERSSON, H., HAGFELDT, A., et al. Dye-sensitized solar cells strike back. Chemical Society Reviews, 2021, 50(22), 12450–12550, doi: 10.1039/D0CS01336F. DOI: https://doi.org/10.1039/D0CS01336F

SCHODEN, F., DOTTER, M., KNEFELKAMP, D., BLACHOWICZ, T., SCHWENZFEIER HELLKAMP, E. Review of state of the art recycling methods in the context of dye sensitized solar cells. Energies, 2021, 14(13), 1–12, doi: 10.3390/en14133741. DOI: https://doi.org/10.3390/en14133741

EHRMANN, A., BLACHOWICZ, T. Recent coating materials for textile-based solar cells. AIMS Materials Science, 2019, 6(2), 234–251, doi: 10.3934/matersci.2019.2.234. DOI: https://doi.org/10.3934/matersci.2019.2.234

GOSSEN, K., DOTTER, M., BROCKHAGEN, B., STORCK, J.L., EHRMANN, A. Long-term investigation of unsealed DSSCs with glycerol-based electrolytes of different compositions. AIMS Materials Science, 2022, 9(2), 283–296, doi: 10.3934/matersci.2022017. DOI: https://doi.org/10.3934/matersci.2022017

STORCK, J.L., DOTTER, M., BROCKHAGEN, B., GROTHE, T. Evaluation of novel glycerol/PEO gel polymer electrolytes for non-toxic dye-sensitized solar cells with natural dyes regarding long-term stability and reproducibility. Crystals, 2020, 10(12), 1–15, doi: 10.3390/cryst10121158. DOI: https://doi.org/10.3390/cryst10121158

DOTTER, M., STORCK, J.L., SURJAWIDJAJA, M., ADABRA, S., GROTHE, T. Investigation of the long-term stability of different polymers and their blends with PEO to produce gel polymer electrolytes for non-toxic dye-sensitized solar cells. Applied Sciences, 2021, 11(13), 1–14, doi: 10.3390/app11135834. DOI: https://doi.org/10.3390/app11135834

GROTHE, T., STORCK, J.L., DOTTER, M., EHRMANN, A. Impact of solid content in the electrospinning solution on the physical and chemical properties of polyacrylonitrile (PAN) nanofibrous mats. Tekstilec, 2020, 63(3), 225–232, doi: 10.14502/Tekstilec2020.63.225-232. DOI: https://doi.org/10.14502/Tekstilec2020.63.225-232

MAMUN, A., TRABELSI, M., KLÖCKER, M., SABANTINA, L., GROßERHODE, C., BLACHOWICZ, T., GRÖTSCH, G., CORNELIßEN, C., STREITENBERGER, A., EHRMANN, A. Electrospun nanofiber mats with embedded non-sintered TiO2 for dye-sensitized solar cells (DSSCs). Fibers, 2019, 7(7), 1–10, doi: 10.3390/fib7070060. DOI: https://doi.org/10.3390/fib7070060

JUHÁSZ JUNGER, I., GROSSERHODE, C., STORCK, J.L., KOHN, S., GRETHE, T., GRASSMANN, C., SCHWARZ-PFEIFFER, A., GRIMMELSMANN, N., MEISSNER, H., BLACHOWICZ, T., et al. Influence of graphite-coating methods on the DSSC performance. Optik, 2018, 174, 40–45, doi: 10.1016/j.ijleo.2018.08.041. DOI: https://doi.org/10.1016/j.ijleo.2018.08.041

UDOMRUNGKHAJORNCHAI, S., JUNGER, I.J., EHRMANN, A. Optimization of the TiO2 layer in DSSCs by a nonionic surfactant. Optik, 2020, 203, 163945, doi: 10.1016/j.ijleo.2019.163945. DOI: https://doi.org/10.1016/j.ijleo.2019.163945

GROTHE, T., WEHLAGE, D., BÖHM, T., REMCHE, A., EHRMANN, A. Needleless Electrospinning of PAN Nanofibre Mats. Tekstilec, 2017, 60(4), 290–295, doi: 10.14502/Tekstilec2017.60.290-295. DOI: https://doi.org/10.14502/Tekstilec2017.60.290-295

STORCK, J.L., GROTHE, T., MAMUN, A., SABANTINA, L., KLÖCKER, M., BLACHOWICZ, T., EHRMANN, A. Orientation of electrospun magnetic nanofibers near conductive areas. Materials, 2019, 13(1), 1–14, doi: 10.3390/ma13010047. DOI: https://doi.org/10.3390/ma13010047

LEE, S., KIM, J., KU, B.-C., KIM, J., JOH, H.-I. Structural evolution of polyacrylonitrile fibers in stabilization and carbonization. Advances in Chemical Engineering and Science, 2012, 2(2), 275–282, doi: 10.4236/aces.2012.22032. DOI: https://doi.org/10.4236/aces.2012.22032

KIM, H.M., CHAE, W.-P., CHANG, K.-W., CHUN, S., KIM, S., JEONG, Y., KANG, I.-K. Composite nanofiber mats consisting of hydroxyapatite and titania for biomedical applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2010, 94B(2), 380–387, doi: 10.1002/jbm.b.31664. DOI: https://doi.org/10.1002/jbm.b.31664

ALARIFI, I.M., ALHARBI, A., KHAN, W.S., SWINDLE, A., ASMATULU, R. Thermal, electrical and surface hydrophobic properties of electrospun polyacrylonitrile nanofibers for structural health monitoring. Materials, 2015, 8(10), 7017–7031, doi: 10.3390/ma8105356. DOI: https://doi.org/10.3390/ma8105356

GOLSHAN, M., OSFOURI, S., AZIN, R., JALALI, T., MOHEIMANI, N.R. Efficiency and stability improvement of natural dye‐sensitized solar cells using the electrospun composite of TiO2 nanofibres doped by the bio‐Ca nanoparticles. International Journal of Energy Research, 2022, 46(11), 15407–15418, doi: 10.1002/er.8242. DOI: https://doi.org/10.1002/er.8242

AL‐ALWANI, M.A.M., AL‐MASHAAN, A.B.S.A., ABDULLAH, M.F. Performance of the dye‐sensitized solar cells fabricated using natural dyes from Ixora coccinea flowers and Cymbopogon schoenanthus leaves as sensitizers. International Journal of Energy Research, 2019, 43(13), 7229–7239, doi: 10.1002/er.4747. DOI: https://doi.org/10.1002/er.4747

PRABAVATHY, N., SHALINI, S., BALASUNDARAPRABHU, R., VELAUTHAPILLAI, D., PRASANNA, S., BALAJI, G., MUTHUKUMARASAMY, N. Algal buffer layers for enhancing the efficiency of anthocyanins extracted from rose petals for natural dye-sensitized solar cell (DSSC). International Journal of Energy Research, 2018, 42(2), 790–801, doi: 10.1002/er.3866. DOI: https://doi.org/10.1002/er.3866

EKPUNOBI, U.E., OGBUEFI, S.I., EKPUNOBI, A.J. Dye pH effect on photoelectric parameters of natural photosensitizer pigment extracted from Alstonia boonei for dye‐sensitized solar cells. International Journal of Energy Research, 2022, 46(2), 1922–1933, doi: 10.1002/er.7307. DOI: https://doi.org/10.1002/er.7307

NIEN, Y.-H., WU, Y.-T., CHOU, J.-C., YANG, P.-H., HO, C.-S., LAI, C.-H., KUO, P.-Y., SYU, R.-H., ZHUANG, S.-W., CHEN, P.-F. Photovoltaic performance of dye-sensitized solar cells under low illumination by modification of a photoanode with ZnFe2O4/TiO2 nanofibers. IEEE Transactions on Nanotechnology, 2022, 21, 606–612, doi: 10.1109/TNANO.2022.3213278. DOI: https://doi.org/10.1109/TNANO.2022.3213278

STORCK, J.L., DOTTER, M., ADABRA, S., SURJAWIDJAJA, M., BROCKHAGEN, B., GROTHE, T. Long-term stability improvement of non-toxic dye-sensitized solar cells ia poly(ethylene oxide) gel electrolytes for future textile-based solar cells. Polymers, 2020, 12(12), 1–15, doi: 10.3390/polym12123035. DOI: https://doi.org/10.3390/polym12123035

Objavljeno

20.12.2022

Kako citirati

Dotter, M., Placke, L. L., Storck, J. L., & Güth, U. (2022). Karakterizacija PAN-TiO2 nanovlaknatih kopren in njihova uporaba kot sprednjih elektrod za elektrokemijske sončne celice. Tekstilec, 65(4), 298–306. https://doi.org/10.14502/tekstilec.65.2022081

Številka

Rubrike

Znanstevni članki

Najbolj brani prispevki istega avtorja(jev)