Matematično modeliranje vpliva vlažnosti na električno upornost usnja
DOI:
https://doi.org/10.14502/tekstilec.65.2022097Ključne besede:
električna upornost, usnje, vlaga, modeliranjePovzetek
Predstavljen je matematični model za simulacijo električne upornosti vzorcev usnja kot funkcije vlažnosti. Poudariti je treba, da je odločilni parameter absolutna in ne relativna zračna vlažnost. Model predvideva, da usnje vsebuje kanale (kapilare), ki lahko absorbirajo vodo iz okolice. Ta učinek predvsem določa električno prevodnost vzorcev usnja. Teoretični rezultati modela se dobro ujemajo z eksperimentalnimi meritvami.
Literatura
NAM, H., SEOL, K.H., LEE, J., CHO, H., JUNG, S.W. Review of capacitive touchscreen technologies: overview, research trends, and machine learning approaches. Sensors, 2021, 21(14), 4776, doi: 10.3390/s21144776. DOI: https://doi.org/10.3390/s21144776
YANG, C., WANG, J., LI, L. A novel approach for developing high thermal conductive artificial leather by utilizing smart electronic materials. Textile Research Journal, 2017, 87(7), 816–828, doi: 10.1177/0040517516641356. DOI: https://doi.org/10.1177/0040517516641356
WEGENE, J.D., THANIKAIVELAN, P. Conducting leathers for smart product applications. Industrial & Engineering Chemistry Research, 2014, 53(47), 18209–18215, doi: 10.1021/ie503956p. DOI: https://doi.org/10.1021/ie503956p
HONG, K.H. Preparation of conductive leather gloves for operating capacitive touch screen displays. Fashion & Textile Research Journal, 2012, 14(6), 1018–1023, doi: 10.5805/KSCI.2012.14.6.1018. DOI: https://doi.org/10.5805/KSCI.2012.14.6.1018
DURAN, D., KADOĞLU, H. Electromagnetic shielding characterization of conductive woven fabrics produced with silver-containing yarns. Textile Research Journal, 2015, 85(10), 1009–1021, doi: 10.1177/0040517512468811 DOI: https://doi.org/10.1177/0040517512468811
WANG, Y., PENG, H.K., LI, T.T., SHIU, B.C., ZHANG, X., LOU, C.W., LIN, J.H. Layer-by-layer assembly of low-temperature in-situ polymerized pyrrole coated nanofiber membrane for high-efficiency electromagnetic interference shielding. Progress in Organic Coatings, 2020, 147, 105861, doi: 10.1016/j.porgcoat.2020.105861. DOI: https://doi.org/10.1016/j.porgcoat.2020.105861
HERTLEER, C., ROGIER, H., VALLOZZI, L., VAN LANGENHOVE, L. A textile antenna for off-body communication integrated into protective clothing for firefighters. IEEE Transactions on Antennas and Propagation, 2009, 57(4), 919–925, doi: 10.1109/TAP.2009.2014574. DOI: https://doi.org/10.1109/TAP.2009.2014574
VALLOZZI, L., VAN TORRE, P., HERTLEER, C., ROGIER, H., MOENECLAEY, M., VERHAEVERT, J. Wireless communication for firefighters using dual-polarized textile antennas integrated in their garment. IEEE Transactions on Antennas and Propagation, 2010, 58(4), 1357–1368, doi: 10.1109/TAP.2010.2041168. DOI: https://doi.org/10.1109/TAP.2010.2041168
DEL-RIO-RUIZ, R., LOPEZ-GARDE, J.M., MACON, J.L., ROGIER, H. Design and performance analysis of a purely textile spiral antenna for on-body NFC applications. In 2017 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 2017, 1–3, doi: 10.1109/IMWS-AMP.2017.8247427. DOI: https://doi.org/10.1109/IMWS-AMP.2017.8247427
JIANG, Y., XU, L., PAN, K., LENG, T., LI, Y., DANOON, L., HU, Z. e‐Textile embroidered wearable near‐field communication RFID antennas. IET Microwaves, Antennas & Propagation, 2019, 13(1), 99–104, doi: 10.1049/iet-map.2018.5435. DOI: https://doi.org/10.1049/iet-map.2018.5435
MITILINEOS, S.A., KALLIVRETAKI, A.E., VASSILIADIS, S., KAZANI, I., GUXHO, G., DASSONVILLE, F., KONCAR, V. A wearable NFC antenna sewn on leather substrate for immersive IoT applications. Textile & Leather Review, 2022, 5, 70–84, doi: 10.31881/TLR.2022.03. DOI: https://doi.org/10.31881/TLR.2022.03
SHIN, E.J., HAN, S.S., CHOI, S.M. Fabrication of highly electrical synthetic leather with polyurethane/poly(3,4-ethylene dioxythiophene)/poly(styrene sulfonate). The Journal of The Textile Institute, 2018, 109(2), 241–247, doi: 10.1080/00405000.2017.1337296. DOI: https://doi.org/10.1080/00405000.2017.1337296
BAO, Y., FENG, C., WANG, C., MA, J., TIAN, C. Hygienic, antibacterial, UV-shielding performance of polyacrylate/ZnO composite coatings on a leather matrix. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 518, 232–240, doi: 10.1016/j.colsurfa.2017.01.033. DOI: https://doi.org/10.1016/j.colsurfa.2017.01.033
HYLLI, M., SHABANI, A., KAZANI, I., BEQIRAJ, E., DRUSHKU, S., GUXHO, G. Application of double in-situ polimerization for changing the leather properties. In Book of Proceedings of 8th International Textile Conference, Tirana, Albania, 2018, 42–47.
BERBERI, P.G. A new unified method for measurment of electrical resistivity of textile assemblies. In Proceedings of ESA Annual Meeting, Boston University, June 23–25, 1999, 121–134.
BERBERI, P.G. Effect of processing on electrical resistivity of textile fibers. Journal of Electrostatics, 2001, 51–52, 538–544, doi: 10.1016/S0304-3886(01)00112-7. DOI: https://doi.org/10.1016/S0304-3886(01)00112-7
KAZANI, I., HYLLI, M., BERBERI, P. Electrical resistivity of conductive leather and influence of air temperature and humidity. Tekstilec, 2021, 64(4), 298–304, doi: 10.14502/Tekstilec2021.64.298-304. DOI: https://doi.org/10.14502/Tekstilec2021.64.298-304
Prenosi
Objavljeno
Verzije
- 04.01.2023 (2)
- 04.01.2023 (1)
Kako citirati
Številka
Rubrike
Licenca
Avtorske pravice (c) 2023 Gilbert De Mey, Ilda Kazani, Majlinda Hylli, Pellumb Berberi

To delo je licencirano pod Creative Commons Priznanje avtorstva-Deljenje pod enakimi 4.0 mednarodno licenco.