Influence of Humidity on the Electric Resistivity of Leather: Mathematical Modelling
DOI:
https://doi.org/10.14502/tekstilec.65.2022097Keywords:
electric resistivity, leather, humidity, modellingAbstract
A mathematical model is presented to simulate the electric resistivity of leather samples as a function of humidity. It will be shown that absolute and not relative humidity is the crucial parameter. The model assumes that the leather includes channels that can absorb water from the surrounding environment. This effect primarily determines the electric conductivity of the leather samples. The theoretical results from the model are quite closely in line with experimental measurements.
Downloads
References
NAM, H., SEOL, K.H., LEE, J., CHO, H., JUNG, S.W. Review of capacitive touchscreen technologies: overview, research trends, and machine learning approaches. Sensors, 2021, 21(14), 4776, doi: 10.3390/s21144776. DOI: https://doi.org/10.3390/s21144776
YANG, C., WANG, J., LI, L. A novel approach for developing high thermal conductive artificial leather by utilizing smart electronic materials. Textile Research Journal, 2017, 87(7), 816–828, doi: 10.1177/0040517516641356. DOI: https://doi.org/10.1177/0040517516641356
WEGENE, J.D., THANIKAIVELAN, P. Conducting leathers for smart product applications. Industrial & Engineering Chemistry Research, 2014, 53(47), 18209–18215, doi: 10.1021/ie503956p. DOI: https://doi.org/10.1021/ie503956p
HONG, K.H. Preparation of conductive leather gloves for operating capacitive touch screen displays. Fashion & Textile Research Journal, 2012, 14(6), 1018–1023, doi: 10.5805/KSCI.2012.14.6.1018. DOI: https://doi.org/10.5805/KSCI.2012.14.6.1018
DURAN, D., KADOĞLU, H. Electromagnetic shielding characterization of conductive woven fabrics produced with silver-containing yarns. Textile Research Journal, 2015, 85(10), 1009–1021, doi: 10.1177/0040517512468811 DOI: https://doi.org/10.1177/0040517512468811
WANG, Y., PENG, H.K., LI, T.T., SHIU, B.C., ZHANG, X., LOU, C.W., LIN, J.H. Layer-by-layer assembly of low-temperature in-situ polymerized pyrrole coated nanofiber membrane for high-efficiency electromagnetic interference shielding. Progress in Organic Coatings, 2020, 147, 105861, doi: 10.1016/j.porgcoat.2020.105861. DOI: https://doi.org/10.1016/j.porgcoat.2020.105861
HERTLEER, C., ROGIER, H., VALLOZZI, L., VAN LANGENHOVE, L. A textile antenna for off-body communication integrated into protective clothing for firefighters. IEEE Transactions on Antennas and Propagation, 2009, 57(4), 919–925, doi: 10.1109/TAP.2009.2014574. DOI: https://doi.org/10.1109/TAP.2009.2014574
VALLOZZI, L., VAN TORRE, P., HERTLEER, C., ROGIER, H., MOENECLAEY, M., VERHAEVERT, J. Wireless communication for firefighters using dual-polarized textile antennas integrated in their garment. IEEE Transactions on Antennas and Propagation, 2010, 58(4), 1357–1368, doi: 10.1109/TAP.2010.2041168. DOI: https://doi.org/10.1109/TAP.2010.2041168
DEL-RIO-RUIZ, R., LOPEZ-GARDE, J.M., MACON, J.L., ROGIER, H. Design and performance analysis of a purely textile spiral antenna for on-body NFC applications. In 2017 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 2017, 1–3, doi: 10.1109/IMWS-AMP.2017.8247427. DOI: https://doi.org/10.1109/IMWS-AMP.2017.8247427
JIANG, Y., XU, L., PAN, K., LENG, T., LI, Y., DANOON, L., HU, Z. e‐Textile embroidered wearable near‐field communication RFID antennas. IET Microwaves, Antennas & Propagation, 2019, 13(1), 99–104, doi: 10.1049/iet-map.2018.5435. DOI: https://doi.org/10.1049/iet-map.2018.5435
MITILINEOS, S.A., KALLIVRETAKI, A.E., VASSILIADIS, S., KAZANI, I., GUXHO, G., DASSONVILLE, F., KONCAR, V. A wearable NFC antenna sewn on leather substrate for immersive IoT applications. Textile & Leather Review, 2022, 5, 70–84, doi: 10.31881/TLR.2022.03. DOI: https://doi.org/10.31881/TLR.2022.03
SHIN, E.J., HAN, S.S., CHOI, S.M. Fabrication of highly electrical synthetic leather with polyurethane/poly(3,4-ethylene dioxythiophene)/poly(styrene sulfonate). The Journal of The Textile Institute, 2018, 109(2), 241–247, doi: 10.1080/00405000.2017.1337296. DOI: https://doi.org/10.1080/00405000.2017.1337296
BAO, Y., FENG, C., WANG, C., MA, J., TIAN, C. Hygienic, antibacterial, UV-shielding performance of polyacrylate/ZnO composite coatings on a leather matrix. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 518, 232–240, doi: 10.1016/j.colsurfa.2017.01.033. DOI: https://doi.org/10.1016/j.colsurfa.2017.01.033
HYLLI, M., SHABANI, A., KAZANI, I., BEQIRAJ, E., DRUSHKU, S., GUXHO, G. Application of double in-situ polimerization for changing the leather properties. In Book of Proceedings of 8th International Textile Conference, Tirana, Albania, 2018, 42–47.
BERBERI, P.G. A new unified method for measurment of electrical resistivity of textile assemblies. In Proceedings of ESA Annual Meeting, Boston University, June 23–25, 1999, 121–134.
BERBERI, P.G. Effect of processing on electrical resistivity of textile fibers. Journal of Electrostatics, 2001, 51–52, 538–544, doi: 10.1016/S0304-3886(01)00112-7. DOI: https://doi.org/10.1016/S0304-3886(01)00112-7
KAZANI, I., HYLLI, M., BERBERI, P. Electrical resistivity of conductive leather and influence of air temperature and humidity. Tekstilec, 2021, 64(4), 298–304, doi: 10.14502/Tekstilec2021.64.298-304. DOI: https://doi.org/10.14502/Tekstilec2021.64.298-304
Downloads
Published
Versions
- 2023-01-04 (2)
- 2023-01-04 (1)
Issue
Section
License
Copyright (c) 2023 Gilbert De Mey, Ilda Kazani, Majlinda Hylli, Pellumb Berberi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.