Matematično modeliranje vpliva vlažnosti na električno upornost usnja

Avtorji

  • Gilbert De Mey Department of Electronics and Information Systems, Ghent University, Technologiepark 126, 9052 Ghent, Belgium
  • Ilda Kazani Department of Textile and Fashion, Polytechnic University of Tirana, Sheshi Nënë Tereza 1, Tirana, Albania; Albanian Young Academy, Shëtitoria Murat Toptani 1000, Tirana, Albania https://orcid.org/0000-0002-5727-5553
  • Majlinda Hylli Department of Textile and Fashion, Polytechnic University of Tirana, Sheshi Nënë Tereza 1, Tirana, Albania
  • Pellumb Berberi Department of Engineering Physics, Polytechnic University of Tirana, Bulevard Dëshmorët e Kombit 4, Tirana, Albania

DOI:

https://doi.org/10.14502/tekstilec.65.2022097

Ključne besede:

električna upornost, usnje, vlaga, modeliranje

Povzetek

Predstavljen je matematični model za simulacijo električne upornosti vzorcev usnja kot funkcije vlažnosti. Poudariti je treba, da je odločilni parameter absolutna in ne relativna zračna vlažnost. Model predvideva, da usnje vsebuje kanale (kapilare), ki lahko absorbirajo vodo iz okolice. Ta učinek predvsem določa električno prevodnost vzorcev usnja. Teoretični rezultati modela se dobro ujemajo z eksperimentalnimi meritvami.

Literatura

NAM, H., SEOL, K.H., LEE, J., CHO, H., JUNG, S.W. Review of capacitive touchscreen technologies: overview, research trends, and machine learning approaches. Sensors, 2021, 21(14), 4776, doi: 10.3390/s21144776. DOI: https://doi.org/10.3390/s21144776

YANG, C., WANG, J., LI, L. A novel approach for developing high thermal conductive artificial leather by utilizing smart electronic materials. Textile Research Journal, 2017, 87(7), 816–828, doi: 10.1177/0040517516641356. DOI: https://doi.org/10.1177/0040517516641356

WEGENE, J.D., THANIKAIVELAN, P. Conducting leathers for smart product applications. Industrial & Engineering Chemistry Research, 2014, 53(47), 18209–18215, doi: 10.1021/ie503956p. DOI: https://doi.org/10.1021/ie503956p

HONG, K.H. Preparation of conductive leather gloves for operating capacitive touch screen displays. Fashion & Textile Research Journal, 2012, 14(6), 1018–1023, doi: 10.5805/KSCI.2012.14.6.1018. DOI: https://doi.org/10.5805/KSCI.2012.14.6.1018

DURAN, D., KADOĞLU, H. Electromagnetic shielding characterization of conductive woven fabrics produced with silver-containing yarns. Textile Research Journal, 2015, 85(10), 1009–1021, doi: 10.1177/0040517512468811 DOI: https://doi.org/10.1177/0040517512468811

WANG, Y., PENG, H.K., LI, T.T., SHIU, B.C., ZHANG, X., LOU, C.W., LIN, J.H. Layer-by-layer assembly of low-temperature in-situ polymerized pyrrole coated nanofiber membrane for high-efficiency electromagnetic interference shielding. Progress in Organic Coatings, 2020, 147, 105861, doi: 10.1016/j.porgcoat.2020.105861. DOI: https://doi.org/10.1016/j.porgcoat.2020.105861

HERTLEER, C., ROGIER, H., VALLOZZI, L., VAN LANGENHOVE, L. A textile antenna for off-body communication integrated into protective clothing for firefighters. IEEE Transactions on Antennas and Propagation, 2009, 57(4), 919–925, doi: 10.1109/TAP.2009.2014574. DOI: https://doi.org/10.1109/TAP.2009.2014574

VALLOZZI, L., VAN TORRE, P., HERTLEER, C., ROGIER, H., MOENECLAEY, M., VERHAEVERT, J. Wireless communication for firefighters using dual-polarized textile antennas integrated in their garment. IEEE Transactions on Antennas and Propagation, 2010, 58(4), 1357–1368, doi: 10.1109/TAP.2010.2041168. DOI: https://doi.org/10.1109/TAP.2010.2041168

DEL-RIO-RUIZ, R., LOPEZ-GARDE, J.M., MACON, J.L., ROGIER, H. Design and performance analysis of a purely textile spiral antenna for on-body NFC applications. In 2017 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 2017, 1–3, doi: 10.1109/IMWS-AMP.2017.8247427. DOI: https://doi.org/10.1109/IMWS-AMP.2017.8247427

JIANG, Y., XU, L., PAN, K., LENG, T., LI, Y., DANOON, L., HU, Z. e‐Textile embroidered wearable near‐field communication RFID antennas. IET Microwaves, Antennas & Propagation, 2019, 13(1), 99–104, doi: 10.1049/iet-map.2018.5435. DOI: https://doi.org/10.1049/iet-map.2018.5435

MITILINEOS, S.A., KALLIVRETAKI, A.E., VASSILIADIS, S., KAZANI, I., GUXHO, G., DASSONVILLE, F., KONCAR, V. A wearable NFC antenna sewn on leather substrate for immersive IoT applications. Textile & Leather Review, 2022, 5, 70–84, doi: 10.31881/TLR.2022.03. DOI: https://doi.org/10.31881/TLR.2022.03

SHIN, E.J., HAN, S.S., CHOI, S.M. Fabrication of highly electrical synthetic leather with polyurethane/poly(3,4-ethylene dioxythiophene)/poly(styrene sulfonate). The Journal of The Textile Institute, 2018, 109(2), 241–247, doi: 10.1080/00405000.2017.1337296. DOI: https://doi.org/10.1080/00405000.2017.1337296

BAO, Y., FENG, C., WANG, C., MA, J., TIAN, C. Hygienic, antibacterial, UV-shielding performance of polyacrylate/ZnO composite coatings on a leather matrix. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 518, 232–240, doi: 10.1016/j.colsurfa.2017.01.033. DOI: https://doi.org/10.1016/j.colsurfa.2017.01.033

HYLLI, M., SHABANI, A., KAZANI, I., BEQIRAJ, E., DRUSHKU, S., GUXHO, G. Application of double in-situ polimerization for changing the leather properties. In Book of Proceedings of 8th International Textile Conference, Tirana, Albania, 2018, 42–47.

BERBERI, P.G. A new unified method for measurment of electrical resistivity of textile assemblies. In Proceedings of ESA Annual Meeting, Boston University, June 23–25, 1999, 121–134.

BERBERI, P.G. Effect of processing on electrical resistivity of textile fibers. Journal of Electrostatics, 2001, 51–52, 538–544, doi: 10.1016/S0304-3886(01)00112-7. DOI: https://doi.org/10.1016/S0304-3886(01)00112-7

KAZANI, I., HYLLI, M., BERBERI, P. Electrical resistivity of conductive leather and influence of air temperature and humidity. Tekstilec, 2021, 64(4), 298–304, doi: 10.14502/Tekstilec2021.64.298-304. DOI: https://doi.org/10.14502/Tekstilec2021.64.298-304

Objavljeno

04.01.2023 — posodobljeno 04.01.2023

Verzije

Kako citirati

De Mey, G., Kazani, I., Hylli, M., & Berberi, P. (2023). Matematično modeliranje vpliva vlažnosti na električno upornost usnja. Tekstilec, 65(4), 322–327. https://doi.org/10.14502/tekstilec.65.2022097

Številka

Rubrike

Znanstevni članki