High-Performance Fibres – A Review of Properties and IR-Spectra

Authors

  • Boris Mahltig University of Applied Sciences Niederrhein, Faculty of Textile and Clothing Technology, Webschulstr. 31, 41065 Mönchengladbach, Germany Author https://orcid.org/0000-0002-2240-5581

DOI:

https://doi.org/10.14502/Tekstilec2021.64.96-118

Keywords:

high-performance fibres, synthetic fibres, inorganic fibres, infrared spectroscopy

Abstract

High-performance fibres are fibre materials that exhibit at least one extraordinary property compared to conventional fibre materials. That extraordinary property is frequently related to excellent fibre stability against certain influences such as fire, heat, chemicals or light. Also, a high mechanical strength is often a property of high-performance fibres. Nevertheless, it should be noted that high-performance fibres exhibit certain weaknesses in addition to their advantages. This review presents a broad overview of the most important high-performance fibres, with a special emphasis on their chemical structure and related infrared spectra (IR-spectra). The categorization of the fibres according to chemical substance classes was performed to make it easy for the reader to find a fibre of interest. The main categories are polyethylene (PE) fibres, polyacrylonitrile (PAN) fibres, polyvinylalcohol (PVAL) fibres, polyester-based fibres, polyamide-based fibres, polyetheretherketone (PEEK) fibres, polyimide (PI) fibres, halogen-containing fibres, polyphenylene sulfide (PPS fibres), resin-based fibres and finally inorganic fibres. Competing materials are also discussed, and structural related materials can be easily identified. In addition to discussing fibre properties and selected applications, one of the main aims is to present a various number of IR-spectra as a tool for structural understanding and to help identify unknown fibres. Here, beside the IR-spectra of high-performance fibres, the reference IR-spectra of common fibres are presented for comparison.

Downloads

Download data is not yet available.

References

ENGELHARDT, A. Die Welt der Fasern 2018. Textilplus, 2018, 7(8), 10−13.

HEARLE, John W.S. High-performance fibres. Cambridge : Woodhead Publishing Limited, 2001.

AFSHARI, Mehdi, SIKKEMA, Doetze J., LEE, Katelyn, BOGLE, Mary. High performance fibers based on rigid and flexible polymers. Polymers Reviews, 2008, 48(2) 230−274, doi: 10.1080/15583720802020129.

WON, Jessica, SAID, Magdi A., SEYAM, Abdel-Fattah M. Development of UV protective sheath for high performance fibers for high altitude applications. Fibers and Polymers, 2013, 14(4), 647−652, doi: 10.1007/s12221-013-0647-9.

LIU, Xiaoyan, YU, Weidong, XU, Peng. Improving the photo-stability of high performance aramid fibers by sol-gel treatment. Fibers and Polymers, 2008, 9(4), 455−460, doi: 10.1007/s12221-008-0073-6.

HAMILTON, Lois E., GATEWOOD, Barbara M., SHERWOOD, Peter. Photodegradation of high performance fibers. Textile Chemist & Colorist, 1994, 26(12), 39−45.

RAO, Yuanqiao, FARRIS, Richard J. A modeling and experimental study of the influence of twist on the mechanical properties of high-performance fiber yarns. Journal of Applied Polymer Science, 2000, 77(9), 1938−1949, doi: 10.1002/1097-4628(20000829)77:9<1938::AID-APP9>3.0.CO;2-D.

STEFFENS, Fernanda, RANA, Sohel, FANGUEIRO, Raul. Development of novel auxetic textile structures using high performance fibres. Materials & Design, 2016, 106, 81−89, doi: 10.1016/j.matdes.2016.05.063.

AFROUGHSABET, V., BIOLZI, L., OZBAKKALOGLU, T. High-performance fiber-reinforced concrete : a review. Journal of Material Science, 2016, 51, 6517−6551, doi: 10.1007/s10853-016-9917-4.

GLOMBIKOVA, Vera, KOMARKOVA, Petra. The efficiency of non-flammable functional underwear. AUTEX Research Journal, 2014, 14(3), doi: 10.2478/aut-2014-0018.

NAEEM, Jawad, MAZARI, Adnan, MAZARI, Funda Buyuk, KUS, Zdenek, WEINER, Jakub. Comparison of thernal performance of firefighter protective clothing at different levels of radiant heat flux density. Tekstilec, 2018, 61(3), 179−191, doi: 10.14502/Tekstilec2018.61.179-191.

SHISHOO, Roshan. Recent developments in materials for use in protective clothing. International Journal of Clothing Science and Technology, 2002, 14(3-4), 201−215, doi: 10.1108/09556220210437167.

HESSE, Manfred, MEIER, Herbert, ZEEH, Bernd. Spectroscopic methods in organic chemistry. Stuttgart : Georg Thieme Verlag, 2008, doi: 10.1055/b-003-108602.

GÜNZLER, Helmut, GREMLICH, Hans-Ulrich. IR spectroscopy. Weinheim : Wiley-VCH, 2002.

BWF Protec [BWF Tec GmbH, technical data sheet] [accessible online]. BWF [accessed 10.1.2021]. Available on World Wide Web: <http://www.bwf-protec.com>.

LIU, Xiao-hui, ZHANG, Qiu-Yan, CHENG, Bo-Wen, REN, Yuan-Lin, ZHANG, Yan-Guang, DING, Chen. Durable flame retardant cellulosic fibers modified with novel, facile and efficient phytic acid-based finishing agent. Cellulose, 2018, 25(1), 799−811, doi: 10.1007/s10570-017-1550-0.

SONG, Pingan, FANG, Zhengping, TONG, Lifang, XU, Zhongbin. Synthesis of a novel oligomeric intumescent flame retardant and its application in polypropylene. Polymer Engineering & Science, 2009, 49(7), 1326−1331, doi: 10.1002/pen.21153.

GUL, Rahmat, ISLAM, Atif, YASIN, Tariq, MIR, Sadullah. Flame-retardant synergism of sepiolite and magnesium hydroxide in a linear low-density polyethylene composite. Journal of Applied Polymer Science, 2011, 121(5), 2772−2777, doi: 10.1002/app.33767.

ZHANG, Wei, XING, Tie-Ling, ZHANG, Qiang-Hua, CHEN, Guo-Qiang. Thermal properties of wool fabric treated by phosphorus-doped silica sols through sol-gel method. Thermal Science, 2014, 18(5), 1603−1605, doi: 10.2298/TSCI1405603Z.

YAO, Kang De, HAN, Weiping, HAN, Dechang. Flame-retarding modification of nylon 6 textile. Journal of Applied Polymer Science, 1992, 46(3), 467−470, doi: 10.1002/app.1992.070460312.

LOY, Walter. Chemiefasern für Technische Textilprodukte. Frankfurt : Deutscher Fachverlag, 2008.

KILINC, Mert, CAKAL, Gaye O., BAYRAM, G., EROGLU, Inci, ÖZKAR, Saim. Flame retardancy and mechanical properties of pet-based composites containing phosphorus and boron-based additives. Journal of Applied Polymer Science, 2015, 132(22), doi: 10.1002/APP.42016.

BOURBIGOT, Serge, FLAMBARD, Xavier. Heat resistance and flammability of high performance fibers : a review. Fire and Materials, 2002, 26(4−5), 155−168, doi: 10.1002/fam.799.

MEAD, W.T., DESPER, C.R., PORTER, Roger S. Physical and mechanical properties of ultra-oriented high-density polyethylene Fibers. Journal of Polymer Science, 1979, 17(5), 859−892, doi: 10.1002/pol.1979.180170511.

MARISSEN, Roelof. Design with ultra strong polyethylene fibers. Materials Sciences and Applications, 2011, 2(5), 319−330, doi: 10.4236/msa.2011.25042.

NATARAJAN, HariharaSudan, HAASE, Hajo, MAHLTIG, Boris. Polyvinylamine application for functionalization of polyethylene fiber materials. The Journal of The Textile Institute, 2017, 108(4), 615−621, doi: 10.1080/00405000.2016.1177246.

EHRENSTEIN, Gottfried W. Polymer Werkstoffe. München : Carl Hanser Verlag, 2011.

SEN, K., BAHRAMI, S. Hagir, BAJAJ, P. High-performance acrylic fibers. Journal of Macromolecular Science, Part C: Polymer Reviews, 1996, 36(1), 1−76, doi: 10.1080/15321799608009642.

MORRIS, E. Ashley, WEISENBERGER, Matthew C. Solution spinning of PAN-based polymers for carbon fiber precursors. ACS Symposium Series, 2014, 1173, 189−213, doi: 10.1021/bk-2014-1173.ch009.

LANG, P.L., KATON, J.E., O´KEEFE, J.F., SCHIERING, D.W. The indentification of fibers by infrared and Raman microspectroscopy. Microchemical Journal, 1986, 34(3), 319−331, doi: 10.1016/0026-265X(86)90127-X.

ZOU, J., ZHANG, F., CHEN, Y., RAYMOND, J.E., ZHANG, S., FAN, J., ZHU, J., LI, A., SEETHO, K., HE, X., POCHAN, D.J., WOOLEY, K.L. Responsive organogels formed by supramolecular self assembly of PEG-block-allyl-functionalized racemic polypeptides into ß-sheet-driven polymeric ribbons. Soft Matter, 2013, 9(25), 5951−5958, doi: 10.1039/c3sm50582k.

BARANI, H., BAHRAMI, S. H. Preparation of polyacrylonitrile and cellulose acetate blend fibers through wet-spinning. Journal of Applied Polymer Science, 2007, 103(3) 2000−2005, doi: 10.1002/app.25326.

New PVA fiber [accessible online]. Kuraray [accessed 10.1.2021]. Available on World Wide Web: <https://www.kuraray.com/products/k2>.

VERT, M., SCHWARCH, G., COUDANE, J. Present and future of PLA polymers. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 1995, 32(4), 787−796, doi: 10.1080/10601329508010289.

CHENG, Ming, ATTYGALLE, Athula B., LOBKOVSKY, Emil B., COATES, Geoffrey W. Single-site catalysts for ring-opening polymerization: Synthesis of heterotactic poly (lactic acid) from rac-lactide. Journal of the American Chemical Society, 1999, 121(49), 11583−11584, doi: 10.1021/ja992678o.

AVINC, Ozan, KHODDAMI, Akbar. Overview of poly (lactic acid)(PLA) fibre. Fibre Chemistry, 2009, 41(6) 391−401, doi: 10.1007/s10692-010-9213-z.

SIEGMUND, Felixine, VEIT, Dieter, GRIES, Thomas. Biopolymere in textilen Anwendungen. Polylactid, Polyhydroxyalkanoate. Chemie in unserer Zeit, 2009, 43(3) 152−158, doi: 10.1002/ciuz.200900469.

BEERS, D. E., RAMIREZ, J. E. Vectran high-performance fibre. Journal of the Textile Institute, 1990, 81(4), 561−574, doi: 10.1080/00405009008658729.

THOMPSON, A.B., WOODS, D.W. The transitions of polyethylene terephthalate. Transactions of the Faraday Society, 1956, 52(10), 1383−1397.

MICHAELS, Alan S., VIETH, Wolf R., BARRIE, James A. Solution of gases in polyethylene terephthalate. Journal of Applied Physics, 1963, 34(1), 1−12, doi: 10.1063/1.1729066.

RIJAVEC, Tatjana, BUKOŠEK, Vili. Novel fibres for the 21st Century. Tekstilec, 2009, 52(10−12), 312−327.

VAN BENNEKOM, A.C.M., VAN DEN BERG, D., BUSSINK, J., GAYMANS, R.J. Blends of amide modified polybutylene terephthalate and polycarbonate : phase separation and morphology. Polymer, 1997, 38(20), 5041−5049, doi: 10.1016/S0032-3861(97)00059-1.

NGUYEN, Congtranh, KIM, Jinhwan. Synthesis of a novel nitrogen-phosphorus flame retardant based on phosphoramidate and its application to PC, PBT, EVA, and ABS. Macromolecular Research, 2008, 16(7), 620−625, doi: 10.1007/BF03218570.

GALLO, E., SCHARTEL, B., BRAUN, U., RUSSO, P., ACIERNO, D. Fire retardant synergisms between nanometric Fe2O3 and aluminum phosphinate in poly (butylene terephthalate). Polymers for Advanced Technologies, 2011, 22(12), 2382−2391, doi: 10.1002/pat.1774.

SAIDI, Muhammad Akmal Ahmad, MAZLAN, Farah Syazwani, HASSAN, Azman, RASHID, Rashita Abd. RAHMAT, Abdul Razak. Flammability, Thermal and mechanical properties of polybutylene terephthalate/dolomite composites. Journal of Physical Science, 2019, 30(3), 175−189, doi: 10.21315/jps2019.30.3.11.

BOGOEVA-GACEVA, G., AVELLA, M., MALINCONICO, M., BUZAROVSKA, A., GROZDANOV, A., GENTILE, G., ERRICO, M.E. Natural fiber eco-composites. Polymer composites, 2007, 28(1), 98−107, doi: 10.1002/pc.20270.

ARSLAN, Figen, DILSIZ, Nursel. Flame resistant properties of LDPE/PLA blends containing halogen-free flame retardant. Journal of Applied Polymer Science, 2020, 137(32), 1−13, doi: 10.1002/APP.48960.

VectranTM [accessible online]. Kuraray [accessed 10.1.2021]. Available on World Wide Web: <https://www.kuraray.eu/products-solutions/product-ranges/vectran>.

CHAE, Han Gi, KUMAR, Satish. Rigid-rod polymeric fibers. Journal of Applied Polymer Science, 2006, 100(1), 791−802, doi: 10.1002/app.22680.

MENCZEL, J.D., COLLINS, G.L., SAW, S.K. Thermal analysis of Vectran® fibers and films. Journal of Thermal Analysis, 1997, 49(1), 201−208, doi: 10.1007/bf01987440.

CHENG, Stephen Z.D., CAO, M.-Y., WUNDERLICH, Bernhard. Glass transition and melting behavior of poly (oxy-1, 4-phenyleneoxy-1, 4-phenylenecarbonyl-1, 4-phenylene)(PEEK). Macromolecules, 1986, 19(7), 1868−1876, doi: 10.1021/ma00161a015.

STRAIN, I.N., WU, Q., POURRAHIMI, A.M., HEDENQVIST, M.S., OLSSON, R.T., ANDERSSON, R.L. Electrospinning of recycled PET to generate tough mesomorphic fibre membranes for smoke filtration. Journal of Materials Chemistry A, 2016, 3(4), 1632−1640, doi: 10.1039/C4TA06191H.

CHANG, Shinn-Jen, SHEEN, Yuung-Ching, CHANG, Rong-Shuh, CHANG, Feng-Chih. The thermal degradation of phosphorus-containing copolyesters. Polymer Degradation Stability, 1996, 54(2−3), 365−371, doi: 10.1016/S0141-3910(96)00064-X.

CHOMACHAYI, M.D., JALALI-ARANI, A., BELTRAN, F.R., DE LA ORDEN, M.U., URREAGA, J.M. Biodegradable nanocomposites developed from PLA/PCL blends and silk fibroin nanoparticles : study on the microstructure, thermal behavior, crystallinity and performance. Journal of Polymers and the Environment, 2020, 28(4), 1252−1264, doi: 10.1007/s10924-020-01684-0.

YUNIARTO, Kurniawan, PURWANTO, Yohanes Aris, PURWANTO, Setyo, WELT, Bruce A., PURWADARIA, Hadi Karia, SUNARTI, Titi Candra. Iinfrared and Raman studies on polylactide acid and polyethylene glycoal-400 blend. AIP Conference Proceedings, 2016, 1725(1), 1−7, doi: 10.1063/1.4945555.

GUO, M., ZHANG, M., HE, D., HU, J., WANG, X., GONG, C., XIE, X., XUE, Z. Comb-like solid polymer electrolyte based on polyethylene glycol-grafted sulfonated polyether ether ketone. Electrochimica Acta, 2017, 255, 396−404, doi: 10.1016/j.electacta.2017.10.033.

Vestamid® [accessible online]. Evonik [accessed 10.1.2021]. Available on World Wide Web: .

Kuraray PA9T-Faser [accessible online]. Kuraray [accessed 10.1.2021]. Available on World Wide Web: .

LIU, K., LI, Y., TAO, L., XIAO, R. Preparation and characterization of polyamide 6 fibre based on a phosphorus-containing flame retardant. RSC Advances, 2018, 8(17), 9261−9271, doi: 10.1039/C7RA13228J.

LU, Z., ZHAO, Y., SU, Z., ZHANG, M., YANG, B. The effect of phosphoric acid functionalization of para-aramid fiber on the mechanical property of para-aramid sheet. Journal of Engineered Fibers and Fabrics, 2018, 13(3), 14−22, doi: 10.1177/155892501801300303.

DEMIR, A., BOZACI, E., GÜLÜMSER, T., SARIKANAT, M. An ecological approach for the surface modification of aramid fibers. Tekstil ve Konfeksiyon, 2016, 26(3), 256−261.

BOYER, R.A. Soybean protein fibers experimental production. Industrial and Engineering Chemistry, 1940, 32(12), 1549−1551, doi: 10.1021/ie50372a004.

FLESNER, Jessica, MAHLTIG, Boris. Fibers from natural resources. In Handbook of Composites from Renewable Materials. Vol. 4: Functionalization. Edited by V. K. Thakur, M. K.Thakur and M. R. Kessler. Beverly : Scrivener Publishing, 2017, pp. 287−310, doi: 10.1002/9781119441632.ch73.

SCHÖLCH, Jessica. Milch macht mode. Nachrichten aus der Chemie, 2013, 61(1) 23, doi: 10.1002/nadc.201390003.

HEIM, Markus, KEERL, David, SCHEIBEL, Thomas. Spinnenseide : vom löslichen Protein zur außergewöhnlichen Faser. Angewandte Chemie, 2009, 121(20), 3638−3650, doi: 10.1002/ange.200803341.

EBERT, Gotthold. Biopolymere : Struktur und Eigenschaften. Stuttgart : Teubner Verlag, 1992.

P84® [fibre technical company brochure] [accessible online]. Evonik [accessed 10.1.2021]. Available on World Wide Web: .

Protéger Les Femmes Et Les Hommes Au Cœur De L'action [Kermel fiber] [accessible online]. KERMEL [accessed 10.1.2021]. Available on World Wide Web: .

OTAIGBES, J. U., MADBOULY, A. The processing, structure and properties of elastomeric fibers. In Handbook of textile fibre structure. Vol. 1. Edited by S.J. Eichhorn, J.W.S. Hearle, M. Jaffe and T. Kikutani. Cambridge : Woodhead, 2009, pp. 325−351, doi: 10.1533/9781845696504.2.325.

ELIAS, Hans-Georg. Polymere – von Monomeren und Makromolekülen zu Werkstoffen. Zug : Hüthig & Wepf Verlag, 1996.

HUANG, Chun-Chun, RWEI, Syang-Peng, HUANG, Yun-Shao, JANG, Shin-Cheng, TSEN, Wen-Chin, CHUANG, Fu-Sheng, CHOW, Jing-Dong, SHU, Yao-Chi. Preparation of elastic fiber yarns of polysiloxane/polyether glycol-containing diacetylene urethane copolymer (PUSiDA) using electrospinning and twisting techniques. Advanced Science, Engineering and Medicine, 2017, 9(5), 407−413, doi: 10.1166/asem.2017.1995.

AMIN, Abid Muhammad, WANG, Li, WANG, Jianjun, YU, Haojie, GAO, Jingmin, LI, Chao, HUO, Jia, AMER, Wael A., YAN, Guangqing, MA, Liang. Recent research progress in the synthesis of polyphosphazene elastomers and their applications. Polymer-Plastics Technology and Engineering, 2010, 49(14), 1399−1405, doi: 10.1080/03602559.2010.496387.

NAIR, Lakshmi S., BHATTACHARYYA, Subhabrata, BENDER, Jared D., GREISH, Yaser E., BROWN, Paul W., ALLCOCK, Harry R., LAURENCIN, Cato T. Fabrication and optimization of methylphenoxy substituted polyphosphazene nanofibers for biomedical applications. Biomacromolecules, 2004, 5(6) 2212−2220, doi: 10.1021/bm049759j.

MAYER-GALL, Thomas, KNITTEL, Dierk, GUTMANN, Jochen S., OPWIS, Klaus. Permanent flame retardant finishing of textiles by allyl-functionalized polyphosphazenes. ACS Applied Materials & Interfaces, 2015, 7(18), 9349−9363, doi: 10.1021/acsami.5b02141.

BURKARTER, E., SAUL, C.K., THOMAZI, F., CRUZ, N.C., ROMAN, L.S., SCHREINER, W.H. Superhydrophobic electrosprayed PTFE. Surface and Coatings Technology, 2007, 202(1), 194−198, doi: 10.1016/j.surfcoat.2007.05.012.

HADIMANI, Ravi L., BAYARAMOL, D. Vatansever, SHAH, T., QIAN, L., SHI, S., SIORES, E. Continuous production of piezoelectric PVDF fibre for e-textile applications. Smart Materials and Structures, 2013, 22(7), doi: 10.1088/0964-1726/22/7/075017.

TSAI, Jin-Shy, HO, Der-Lin, HUNG, Su-Chi. Thermal characterization of acrylonitrile-vinylidene chloride copolymers for modacrylic fibres. Journal of Materials Science Letters, 1991, 10, 881−883, doi: 10.1007/BF00724769.

TSAI, Jin-Shy. Inflammability of modacrylic fibre. Journal of Materials Science Letters, 1992, 11, 953−955, doi: 10.1007/BF00729105.

ZHANG, Xing-Xiang, WANG, Xue-Chen, TAO, Xiao-Ming, YICK, Kit-Lun. Structures and properties of wet spun thermo-regulated polyacrylonitrile-yinylidene chloride fibers. Textile Research Journal, 2006, 76(5), 351−359, doi: 10.1177/0040517506061959.

YOO, H., KWAK, S.-Y. Surface functionalization of PTFE membranes with hyperbranched poly(amidoamine) for the removal of Cu2+ ions from aqueous solution. Journal of Membrane Science, 2013, 448, 125−134, doi: 10.1016/j.memsci.2013.07.052.

CALLEJA, G., HOUDAYER, A., ETIENNE-CALAS, S., BOURGOGNE, D., FLAUD, V., SILLY, G., SHIBAHARA, S., TAKAHARA, A., JOURDAN, A., HAMWI, A., AMEDURI, B. Conversion of poly(ethylene-alt-tetrafluoroethylene) copolymers into polytetrafluoroethylene by direct fluorination: A convenient approach to access new properties at the ETFE surface, Journal of Polymer Science Part A: Polymer Chemistry, 2011, 49(7), 1517−1527, doi: 10.1002/pola.24588.

ELASHMAWI, I.S., GAABOUR, L.H. Raman, morphology and electrical behavior of nanocomposites based on PEO/PVDF with multi-walled carbon nanotubes. Results in Physics, 2015, 5, 105−110, doi: 10.1016/j.rinp.2015.04.005.

XIAO, X, ZENG, Z., XIAO, S. Behavior and products of mechano-chemical dichlorination of polyvinyl chloride and poly (vinylidene chloride). Journal of Hazardous Materials, 2008, 151(1), 118−124, doi: 10.1016/j.jhazmat.2007.05.067.

ZHU, Fanglong, FENG, Qianqian, LIU, Rangtong, XIN, Qun, LI, Kejing, XU, Yanfang. Pyrolysis kinetics of polysulfonamide fiber used for fire protective clothing. Textile Research Journal, 2016, 86(5), 472−479, doi: 10.1177/0040517515592808.

ZHANG, Xiansheng, TANG, Xiaoning, Wang, Ran, Wang, Rui, YAN, Xiong, SHI Meiwu. The fire retardant properties and pyrolysis mechanism of polysulfonamide (PSA) fibers. Textile Research Journal, 2018, 88(11), 1299−1307, doi: 10.1177/0040517517698990.

DURANI, S.M.A., KHAWAJA, E.E., MASOUDI, H.M., BASTL, Z., SUBRT, J., GALIKOVA, A., POLA, J. IR laser ablative desulfurization of poly(1,4-phenylene sulfide). Journal of Analytical and Applied Pyrolysis, 2005, 73(1), 145−149, doi: 10.1016/j.jaap.2005.01.005.

WANG, Yang, WANG, Dan, SONG, Yuanjun, ZHAO, Lei, RAHOUI, Nahla, JIANG, Bo, HUANG, Yudong. Investigation of the mechanical properties of the modified poly (p-phenylene benzobisoxazole) fibers based on 2-(4-aminophenyl)-1 H-benzimidazol-5-amine. High Performance Polymers, 2018, 30(5), 511−518, doi: 10.1177/0954008317706105.

MAITY, Subhankar, SINGHA, Kunal. Melamine fiber − synthesis, features and applications. Chemical Fibers International, 2012, 62(4) 183−186.

[smartMELAMINE fiber] [accessible online]. smartMELAMINE [accessed 10.1.2021]. Available on World Wide Web: <https://smartmelamine.com/>.

BROUTMAN, L.J. Properties of phenolic fiber-reinforced polymers. Polymer Engineering & Science, 1983, 23(14) 776−778, doi: 10.1002/pen.760231405.

HASAN, Mir Mohammad Badrul, NOCKE, Andreas, CHERIF, Chokri. High temperature resistant insulated hybrid yarns for carbon fiber reinforced thermoplastic composites. Journal of Applied Polymer Science, 2013, 130(2), 1179−1184, doi: 10.1002/app.39270.

BORGSTÄDT, Tim, MAHLTIG, Boris. Laser treatment of high-performance Kynol fibers – an example as alternative tool for coloration and imaging on surfaces of high-performance fibers. Tekstilna Industrija, 2020, 68(3), 4−9, doi: 10.5937/tekstind2003004B.

MAHLTIG, Boris, KYOSEV, Yordan. Inorganic and composite fibers. Duxford : Elsevier, 2018.

FRIEDRICH, Marion, SCHULZE, Anne, PRÖSCH, Georg, WALTER, Cornelia, WEIKERT, Detlef, BINH, Nguyen M., ZAHN, Dietrich R. T. Investigation of chemically treated basalt and glass fibres. Mikrochimica Acta, 2000, 133(1-4), 171−174, doi: 10.1007/s006040070088.

MORENO-MALDONADO, V., ACOSTA-TORRES, L.S., BARCELO-SANTANA, F.H., VANEGAS-LANCON, R.D., PLATA-RODRIGUEZ, M.E., CASTANO, V.M. Fiber-reinforced nanopigmented poly(methyl methacrylate) as improved denture base. Journal of Applied Polymer Science, 2012, 126(1), 289−296, doi: 10.1002/app.36913.

RAVICHANDRAN, R., GANDHI, S., SUNDARAMURTHI, D., SETHURAMAN, S, KRISHNAN, U.M. Hierarchical mesoporous silica nanofibers as multifunctional scaffolds for bone tissue regeneration. Journal of Biomaterials Science, Polymer Edition, 2013, 24(17), doi: 10.1080/09205063.2013.816930.

XU, B., LONG, J., XU, G., YANG, J., LIANG, Y., HU, J. Facile fabrication of superhydrophobic and superoleophobic glass-fiber fabric for water-in-oil emulsion separation. Textile Research Journal, 2019, 89(13), 2674−2681, doi: 10.1177/0040517518801189.

RAVICHANDRAN, J., SIVASANKAR, B. Properties and catalytic activity of acid-modified montmorillonite and vermiculite. Clays and Clay Minerals, 1997, 45(6), 854−858.

ARAB, M., BOUGEARD, D., SMIRNOV, K.S. Experimental and computer simulation study of the vibrational spectra of vermiculite, Physical Chemistry Chemical Physics, 2002, 4(10), 1957−1963, doi: 10.1039/B110768B.

GUTNIKOV, S.I., MALAKHO, A.P., LAZORYAK, B.I., LOGINOV, V.S. Influence of alumina on the properties of continuous basalt fibers. Russian Journal of Inorganic Chemistry, 2009, 54(2), 191−196, doi: 10.1134/S0036023609020041.

OVERKAMP, T., MAHLTIG, B., KYSOSEV, Y. Strength of basalt fibers influenced by thermal and chemical treatment. Journal of Industrial Textiles, 2018, 47(5), 815−833, doi: 10.1177/1528083716674905.

REGAR, Madan Lal, AMJAD, Akhtarul Islam. Basalt fibre-ancient mineral fibre for green and sustainable development. Tekstilec, 2016, 59(4), 321−334, doi: 10.14502/Tekstilec2016.59.321-334.

RUFFEN, Carolin, MAHLTIG, Boris. Basalt fibers as functional additives in coating of textiles. Journal of Coating Technology and Research, 2020, in press, doi: 10.1007/s11998-020-00383-8.

GRZESZCZYK, S., MATUSZEK-CHMUROWSKA, A., VEJMELKOVA, E., CERNY, R. Reactive powder concrete containing basalt fibers : strength, abrasion and porosity. Materials, 2020, 13(13), doi: 10.3390/ma13132948.

VILATELA, Juan J., WINDLE, Alan H. Yarn-like carbon nanotube fibers. Advanced Materials, 2010, 22(44), 4959−4963, doi: 10.1002/adma.201002131.

LUO, Xiaogang, WENG, Wei, LIANG, Yunxia, HU, Zexu, ZHANG, Yang, YANG, Junjie, YANG, Lijun, YANG, Shengyuan, ZHU, Meifang, CHENG, Hui-Ming. Multifunctional fabrics of carbon nanotube fibers. Journal of Materials Chemistry A, 2019, 7(15), 8790−8797, doi: 10.1039/C9TA01474H.

XU, Zhen, SUN, Haiyan, ZHAO, Xiaoli, GAO, Chao. Ultrastrong fibers assembled from giant graphene oxide sheets. Advanced Materials, 2013, 25(2) 188−193, doi: 10.1002/adma.201203448.

HONARKAR, Hengameh, RAHIMI, Azam. Applications of inorganic polymeric materials, III: polyphosphazenes. Monatshefte für Chemie-Chemical Monthly, 2007, 138(10), 923−933, doi: 10.1007/s00706-007-0705-3.

Downloads

Published

2021-03-28

Issue

Section

Scientific article

How to Cite

Mahltig, B. (2021). High-Performance Fibres – A Review of Properties and IR-Spectra. Tekstilec, 64(2), 96-118. https://doi.org/10.14502/Tekstilec2021.64.96-118