Hidrofobnost in protibakterijska aktivnost bombažne tkanine, obdelane s silicijevim solom, hitozanom in HDTMS iz vodnega medija

Avtorji

  • Prasanta Das Dr. B. R. Ambedkar National Institute of Technology, Department of Textile Technology, Jalandhar, Punjab-144027
  • Manas Datta Roy Dr. B. R. Ambedkar National Institute of Technology, Department of Textile Technology, Jalandhar, Punjab-144027 https://orcid.org/0000-0003-2751-9518
  • Subrata Ghosh Dr. B. R. Ambedkar National Institute of Technology, Department of Textile Technology, Jalandhar, Punjab-144027

DOI:

https://doi.org/10.14502/tekstilec.65.2022094

Ključne besede:

bombaž, vodoodbojnost, protimikrobnost, silika, hitozan, heksadeciltrimetoksisilan

Povzetek

Hidrofobna površina s protibakterijskimi lastnostmi ima številne uporabne lastnosti, vključno s samočistilnimi, proti sprijemanju in zamazanju, ki so pomembne za športna oblačila in materiale za celjenje ran ter vsadke. Obstojnost obdelave v vodi (pH 7,4) je bistvena zahteva za tehnične tekstilije, med njimi zlasti za medicinske tekstilije. Za izdelavo izjemno hidrofobne površine s protibakterijskimi lastnostmi na bombažni tkanini je bil v tej raziskavi uporabljen silicijev sôl, hitozan in heksadeciltrimetoksisilan (HDTMS). Najprej je bila bombažna tkanina obdelana s silicijevim sôlom, ki nastane s hidrolizo in kondenzacijo tetraetoksisilana (TEOS) v alkalnem okolju. Na tako obdelano tkanino je bil v naslednjem koraku za dosego protibakterijskih lastnosti nanesen hitozan. Sledila je naknadna obdelava s hidroliziranim HDTMS za dosego visoke hidrofobnosti. Hidrofobnost je bila ocenjena z merjenjem stičnega kota vode, protibakterijske lastnosti pa so bile določene z merjenjem cone inhibicije (ZOI). Obdelana tkanina je izkazala visoko hidrofobnost. Za oceno obstojnosti obdelave sta bili hidrofobnost in cona inhibicije (ZOI) določeni tudi na vzorcih, ki so bili za 30 dni potopljeni v vodni medij. Po 30 dneh potopa vzorcev v vodni medij se je stični kot vode zmanjšal s 151,7° na 129,5°, ZOI pa se je povečal z 1 mm, na 5 mm, kar kaže na povečanje protibakterijske aktivnosti s časom potopitve. Izmerjena je bila tudi vpojnost obdelanih in neobdelanih tkanin. S pomočjo analize EDS je bila proučena stabilnost obdelave na vzorcih tkanin. Analiza SEM je bila izvedena za proučevanje morfologije površine, FTIR pa je bil uporabljen za določitev funkcionalnih skupin na površini obdelanih vzorcev in kemijskih sprememb površine po namakanju v vodnem mediju. Razvoj hidrofobne bombažne tkanine s protibakterijskimi lastnostmi je lahko v pomoč pri izdelavi naravnih biomaterialov in drugih izdelkov iz tehničnih tekstilij.

Literatura

ESPANHOL-SOARES, M., COSTA, L., SILVA, M.R.A., SOARES SILVA, F., RIBEIRO, L.M.S., GIMENES, R. Super-hydrophobic coatings on cotton fabrics using sol–gel technique by spray. Journal of Sol-Gel Science and Technology, 2020, 95(1), 22–33, doi: 10.1007/s10971-020-05307-x.

XUE, C.H., CHEN, J., YIN, W., JIA, S.T., MA, J. Z. Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles. Applied Surface Science, 2012, 258(7), 2468–2472, doi: 10.1016/j.apsusc.2011.10.074.

HASANZADEH, M., FAR, H.S., HAJI, A., ROSACE, G. Facile fabrication of breathable and superhydrophobic fabric based on silica nanoparticles and amino‐modified polydimethylsiloxane. Preprints, 2020, doi: 10.20944/preprints202005.0123.v1.

CHENG, W., LIU, W., WANG, Q., WANG, P., ZHOU, M., YU, Y. Durable hydrophobic and antibacterial textile coating via PDA/AgNPs/ODA in situ assembly. Cellulose, 2022, 29(2), 1175–1187, doi: 10.1007/s10570-021-04339-y.

ALI, N. F., EL-KHATIB, E.M., EL-MOHAMEDY, R.S.R. The antimicrobial activity of pretreated silk fabrics dyed with natural dye. International Journal of Current Microbiology and Applied Sciences, 2015, 4(6), 1166-1173.

BERENDJCHI, A., KHAJAVI, R., YAZDANSHENAS, M.E. Fabrication of superhydrophobic and antibacterial surface on cotton fabric by doped silica-based sols with nanoparticles of copper. Nanoscale Research Letters, 2011, 6(1), 1–8, doi: 10.1186/1556-276X-6-594.

BU, Y., ZHANG, S., CAI, Y., YANG, Y., MA, S., HUANG, J., YANG, H., YE, D., ZHOU, Y., XU, W., GU, S. Fabrication of durable antibacterial and superhydrophobic textiles via in situ synthesis of silver nanoparticle on tannic acid-coated viscose textiles. Cellulose, 2019, 26(3), 2109–2122, doi: 10.1007/s10570-018-2183-7.

VAGHOLKAR, K., PAWANARKAR, A., VAGHOLKAR, S., IYENGAR, M., PATHAN, S. Hernia mesh infection: a surgical disaster., International Surgery Journal, 2016, 3(2), 950–953, doi: 10.18203/2349-2902.isj20160701.

AMID, P.K., SHULMAN, A G., LICHTENSTEIN, I.L., HAKAKHA, M. Biomaterials for abdominal wall hernia surgery and principles of their applications. Langenbecks Archiv für Chirurgie, 1994, 379(3), 168–171, doi: 10.1007/bf00680113.

KALABA, S., GERHARD, E., WINDER, J.S., PAULI, E.M., HALUCK, R.S., YANG, J. Design strategies and applications of biomaterials and devices for Hernia repair. Bioactive Materials, 2016, 1(1), 2–17, doi: 10.1016/j.bioactmat.2016.05.002.

KLINGE, U., JUNGE, K., SPELLERBERG, B., PIROTH, C., KLOSTERHALFEN, B., SCHUMPELICK, V. Do multifilament alloplastic meshes increase the infection rate? Analysis of the polymeric surface, the bacteria adherence, and the in vivo consequences in a rat model. Journal of Biomedical Materials Research, 2002, 63(6), 765–771, doi: 10.1002/jbm.10449.

ROBINSON, T.N., CLARKE, J.H., SCHOEN, J., WALSH, M.D. Major mesh-related complications following hernia repair: Events reported to the Food and Drug Administration. Surgical Endoscopy and Other Interventional Techniques, 2005, 19(12), 1556–1560, doi: 10.1007/s00464-005-0120-y.

PARK, J.B. Biomaterials science and engineering. New York: Plenum Press, 1984.

BAUER, J.W., XU, L.-C., VOGLER, E.A., SIEDLECKI, C.A. Surface dependent contact activation of factor XII and blood plasma coagulation induced by mixed thiol surfaces. Biointerphases, 2017, 12(2), 02D410, doi: 10.1116/1.4983634.

XU, L.C., BAUER, J.W., SIEDLECKI, C.A. Proteins, platelets, and blood coagulation at biomaterial interfaces. Colloids and Surfaces B: Biointerfaces, 2014, 124, 49–68, doi: 10.1016/j.colsurfb.2014.09.040.

VOGLER, E. A. Surface modification for biocompatibility. In Engineered Biomimicry. Edited by Lakhtakia, A. and Martín-Palma, R.J. Elsevier, 2013, 189–220, doi: 10.1016/B978-0-12-415995-2.00008-8.

FISCHER, M., MAITZ, M.F., WERNER, C. Coatings for biomaterials to improve hemocompatibility. In Hemocompatibility of Biomaterials for Clinical Applications. Edited by Siedleck, C. A. Woodhead Publishing, 2018, 163–190, doi: 10.1016/B978-0-08-100497-5.00007-0.

ASLANIDOU, D., KARAPANAGIOTIS, I. Superhydrophobic, superoleophobic and antimicrobial coatings for the protection of silk textiles. Coatings, 2018, 8(3), 1–13, doi: 10.3390/coatings8030101.

RICHARD, E., LAKSHMI, R. V., ARUNA, S. T., BASU, B. J. A simple cost-effective and eco-friendly wet chemical process for the fabrication of superhydrophobic cotton fabrics. Applied Surface Science, 2013, 277, 302–309, doi: 10.1016/j.apsusc.2013.04.052.

AHMAD, D., VAN DEN BOOGAERT, I., MILLER, J., PRESSWELL, R., JOUHARA, H. Hydrophilic and hydrophobic materials and their applications. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2018, 40(22), 2686–2725, doi: 10.1080/15567036.2018.1511642.

PARVATE, S., DIXIT, P., CHATTOPADHYAY, S. Superhydrophobic surfaces: insights from theory and experiment. Journal of Physical Chemistry B, 2020, 124(8), 1323–1360, doi: 10.1021/acs.jpcb.9b08567.

PAL, S., MONDAL, S., DAS, A., MONDAL, D., PANDA, B., MAITY, J. Multifunctional textile fabric and their application. Journal of Fashion Technology & Textile Engineering, 2021, 9(6), 1–2.

SURYAPRABHA, T., SETHURAMAN, M. G. Fabrication of copper-based superhydrophobic self-cleaning antibacterial coating over cotton fabric. Cellulose, 2017, 24(1), 395–407, doi: 10.1007/s10570-016-1110-z.

ZAKERIZADEH, M., DOGOLSAR, M. A., JAMSHIDI, Z., HAGHI, A. K. Non-fluorinated sol-gel processing of hydrophobic coating on cotton fabric. Indian Journal of Fibre & Textile Research, 2021, 46(4), 376–384, http://nopr.niscpr.res.in/handle/123456789/58705.

SHATERI KHALIL-ABAD, M., YAZDANSHENAS, M. E. Superhydrophobic antibacterial cotton textiles. Journal of Colloid and Interface Science, 2010, 351(1), 293–298, doi: 10.1016/j.jcis.2010.07.049.

ZARE, M., GHOMI, E. R., VENKATRAMAN, P. D., RAMAKRISHNA, S. Silicone-based biomaterials for biomedical applications: Antimicrobial strategies and 3D printing technologies. Journal of Applied Polymer Science, 2021, 138(38), 1–18, doi: 10.1002/app.50969.

GAO, D., LI, X., LI, Y., LYU, B., REN, J., MA, J. Long-acting antibacterial activity on the cotton fabric. Cellulose, 2021, 28(3), 1221–1240, doi: 10.1007/s10570-020-03560-5.

EL-SHAFEI, A., ELSHEMY, M., ABOU-OKEIL, A. Eco-friendly finishing agent for cotton fabrics to improve flame retardant and antibacterial properties. Carbohydrate Polymers, 2015, 118, 83–90, doi: 10.1016/j.carbpol.2014.11.007.

SOUZA, J.M., HENRIQUES, M., TEIXEIRA, P., FERNANDES, M.M., FANGUEIRO, R., ZILLE, A. Comfort and infection control of chitosan-impregnated cotton gauze as wound dressing. Fibers and Polymers, 2019, 20(5), 922–932, doi: 10.1007/s12221-019-9053-2.

HAMEDI, H., MORADI, S., HUDSON, S.M., TONELLI, A.E., KING, M.W. Chitosan based bioadhesives for biomedical applications: a review. Carbohydrate Polymers, 2022, 282, 1–12, doi: 10.1016/j.carbpol.2022.119100.

WALLACE, H.A., ZITO, P.M. Wound healing phases. StatPearls Publishing, 2022, http://www.ncbi.nlm.nih.gov/pubmed/29262065.

HOPKINS, E., SANVICTORES, T., SHARMA, S. Physiology, acid base balance. StatPearls Publishing, 2022, https://www.ncbi.nlm.nih.gov/books/NBK507807/ .

GAO, Q., ZHU, Q., GUO, Y., YANG, C.Q. Formation of highly hydrophobic surfaces on cotton and polyester fabrics using silica sol nanoparticles and nonfluorinated alkylsilane. Industrial and Engineering Chemistry Research, 2009, 48(22), 9797–9803, doi: 10.1021/ie9005518.

ZHANG, Z., CHEN, L., JI, J., HUANG, Y., CHEN, D. Antibacterial properties of cotton fabrics treated with chitosan. Textile Research Journal, 2003, 73(12), 1103–1106, doi: 10.1177/004051750307301213.

DATTA ROY, M., CHATTOPADHYAY, R., SINHA, S.K. Wicking performance of profiled fibre part a: assessment of yarn. Journal of The Institution of Engineers (India): Series E, 2017, 98(2), 155–163, doi: 10.1007/s40034-017-0097-9.

ELKASHOUTY, M., ELSYAED, H., TWAFFIEK, S., SALEM, T., ELHADAD, S.M. An overview: textile surface modification by using sol-gel technology. Egyptian Journal of Chemistry, 2020, 63(9), 3301–3311, doi: 10.21608/ejchem.2020.24441.2464.

BUDNYAK, T.M., PYLYPCHUK, I.V, TERTYKH, V.A., YANOVSKA, E.S., KOLODYNSKA, D. Synthesis and adsorption properties of chitosan-silica nanocomposite prepared by sol-gel method. Nanoscale Research Letters, 2015, 10(87), 1–10, doi: 10.1186/s11671-014-0722-1.

TEO, L., CHEN, C., KUO, J. Fourier transform infrared spectroscopy study on effects of temperature on hydrogen bonding in amine-containing polyurethanes and poly(urethane-urea)s. Macromolecules, 1997, 30(6), 1793–1799, doi: 10.1021/ma961035f.

ARIK, B., SEVENTEKİN, N. Evaluation of antibacterial and structural properties of cotton fabric coated by chitosan/titania and chitosan/silica hybrid sol-gel coatings. Textile and Apparel, 2011, 21(2), 107–115.

GUARDIA, E., SKARMOUTSOS, I., MASIA, M. Hydrogen bonding and related properties in liquid water: a car–parrinello molecular dynamics simulation study. Journal of physical chemistry B, 2015, 119(29), 8926–8938, doi: 10.1021/jp507196q.

WIDATI, A.A., FAHMI, M.Z., SAKTI, S.C.W., BUDIASTANTI, T.A., PURBANINGTIAS, T.E. Hydrophobic material: effect of alkyl chain length on the surface roughness. Journal of Manufacturing and Materials Processing, 2022, 6(110), 1–16, doi: 10.3390/jmmp6050110.

PURCAR, V., VALENTIN, R., ALINA, R., ISPAS, G.C., FRONE, A.N., NICOLAE, C. A., GABOR, R.A., ANASTASESCU, M., STROESCU, H., CĂPRĂRESCU, S. Preparation and characterization of some sol-gel modified silica coatings deposited on polyvinyl chloride (PVC) substrates. Coatings, 2021, 11(11), 1–13, doi: 10.3390/coatings11010011.

DRABCZYK, A., KUDŁACIK-KRAMARCZYK, S., GŁAB, M., KEDZIERSKA, M., JAROMIN, A., MIERZWIŃSKI, D., TYLISZCZAK, B. Physicochemical investigations of chitosan-based hydrogels containing Aloe vera designed for biomedical use. Materials, 2020, 13(14), 1–19, doi: 10.3390/ma13143073.

WEI, D.W., WEI, H., GAUTHIER, A.C., SONG, J., JIN, Y., XIAO, H. Superhydrophobic modification of cellulose and cotton textiles: methodologies and applications. Journal of Bioresources and Bioproducts, 2020, 5(1), 1–15, doi: 10.1016/j.jobab.2020.03.001.

LAW, K.-Y. Definitions for hydrophilicity, hydrophobicity, and superhydrophobicity: getting the basics right. The Journal of Physical Chemistry Letters, 2014, 5(4), 686–688, doi: 10.1021/jz402762h .

XUE, C.H., JIA, S.T., ZHANG, J., TIAN, L.Q., CHEN, H.Z., WANG, M. Preparation of superhydrophobic surfaces on cotton textiles. Science and Technology of Advanced Materials, 2008, 9(3), 1–7, doi: 10.1088/1468-6996/9/3/035008.

HASANZADEH, M., FAR, H.S., HAJI, A., ROSACE, G. Surface modification of polyester/viscose fabric with silica hydrosol and amino-functionalized polydimethylsiloxane for the preparation of a fluorine-free superhydrophobic and breathable textile. Coatings, 2022, 12(3), 1–9, doi: 10.3390/coatings12030398 .

TEIXIDÓ, H., STAAL, J., CAGLAR, B., MICHAUD, V. Capillary effects in fiber reinforced polymer composite processing: a review. Frontiers in Materials, 2022, 9, 81–104, doi: 10.3389/fmats.2022.809226.

ALMOUGHNI, H., GONG, H. Capillary flow of liquid water through yarns: a theoretical model. Textile Research Journal, 2015, 85(7), 722–732, doi: 10.1177/0040517514555797.

PARK, S., KIM, J., PARK, C.H. Superhydrophobic textiles: review of theoretical definitions, fabrication and functional evaluation. Journal of Engineered Fibers and Fabrics, 2015, 10(4), 1–18, doi: 10.1177/155892501501000401.

HEBEISH, A.A., ALI, N.F., EL- THALOUTH, J.I.A. Green strategy for development of antimicrobial printed textile fabrics. Research Journal of Textile and Apparel, 2012, 16(1), 77–85, doi: 10.1108/RJTA-16-01-2012-B008.

Objavljeno

24.01.2023

Kako citirati

Das, P., Roy, M. D., & Ghosh, S. (2023). Hidrofobnost in protibakterijska aktivnost bombažne tkanine, obdelane s silicijevim solom, hitozanom in HDTMS iz vodnega medija. Tekstilec, 66(1), 4–17. https://doi.org/10.14502/tekstilec.65.2022094

Številka

Rubrike

Znanstveni članki