Antimicrobial Active Chitosan-Based Cotton Yarns: Effect of Chitosan Solution Concentration


  • Emilija Toshikj “Ss. Cyril and Methodius” University in Skopje, Department of Textile Engineering, Faculty of Technology and Metallurgy, Ruger Boskovic 16, 1000 Skopje, Republic of North Macedonia Author
  • Ognen Petrovski “Ss. Cyril and Methodius” University in Skopje, Department of Preclinical and Clinical Pharmacology and Toxicology, Faculty of Medicine, 50 Divizija 6, Skopje, Republic of North Macedonia Author
  • Milena Petrovska “Ss. Cyril and Methodius” University in Skopje, Department of Microbiology and Parasitology, Faculty of Medicine, 50 Divizija 6, Skopje, Republic of North Macedonia Author
  • Igor Jordanov “Ss. Cyril and Methodius” University in Skopje, Department of Textile Engineering, Faculty of Technology and Metallurgy, Ruger Boskovic 16, 1000 Skopje, Republic of North Macedonia Author



cotton, chitosan, antimicrobial activity, Escherichia coli bacteria, Staphylococcus aureus bacteria


Using the exhaustion-pad-dry-rinse method, chitosan was applied to alkaline-scoured and bleached cotton yarns in a solution with concentrations ranging from 0.2–1% to achieve good antimicrobial activity against the bacteria Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). Studied samples were also assessed by measuring the amount of introduced chitosan, amount of accessible amino groups, mechanical properties, whiteness index and the b* colour coordinate. Alkaline-scoured and bleached cotton yarns treated with all concentrations of the chitosan solution showed good antimicrobial activity against Escherichia coli and Staphylococcus aureus. Better antimicrobial activity was achieved against Escherichia coli. Increasing the concentration of chitosan solution deteriorated the mechanical properties of chitosan-treated cotton yarns. The optimal concentration of chitosan solution incorporated in the exhaustion phase to obtain chitosan-treated yarns with good antimicrobial activity and mechanical properties was 0.6%. The best antimicrobial treatment should minimise potential economic costs while providing functionality.


Download data is not yet available.


AHRARI, M., KARAHAN, M., HUSSAIN, M., NAWAB, Y., KHAN, A., SHIRAZI, A.A. Development of anti-bacterial and anti-viral nonwoven surgical masks for medical applications. Tekstilec, 2022, 65(2), 135–146, doi: 10.14502/tekstilec.65.2022020.

KORICA, M., KRAMAR, A., PERŠIN, Z., OBRADOVIĆ, B., KURAICA, M., ZEMLJIČ, F.L., KOSTIĆ, M. Dobijanje medicinskog tekstila na bazi viskoze i hitozana sa istovremeno poboljšanim sorpcionim i antibakterijskim svojstvima primenom dielektričnog barijernog pražnjenja [Obtaining medical textiles based on viscose and chitosan with at the same time improved sorption and antibacterial properties by application dielectric barrier discharge]. Tekstilna Industrija, 2021, 69(4), 46–53, doi: 10.5937/tekstind2104046K.

SHAHID-UL-ISLAM, SHAHID, M., MOHAMMAD, F. Green chemistry approaches to develop antimicrobial textile based on sustainable biopolymers-a review. International & Engineering Chemistry Research, 2013, 53(15), 5245–5260, doi: 10.1021/ie303627x.

BORKOW, G., GABBAY, J. Biocidal textiles can help fight nosocomial infections. Medical Hypotheses, 2008, 70(5), 990–994, doi: 10.1016/j.mehy.2007.08.025.

GAO, Y., CRANSTON, R. Recent advances in antimicrobial treatments of textiles. Textile Research Journal, 2008, 78(1), 60–72, doi: 10.1177/0040517507082332.

PERAN, J., ERCEGOVIĆ, R., KOSALEC, I., ZIBERI, F. Antimicrobial effectiveness of cellulose based fabrics treated with silver nitrate solution using plasma process. Tekstilec, 2017, 60(4), 247–253, doi: 10.14502/Tekstilec2017.60.247-253.

JOSHI, M., WAZED, A., PORWAR, R., RAJENDAN, S. Ecofriendly antimicrobial finishing of textiles using bioactive agents based on natural products. Indian Journal of Fibre and Textile Research, 2009, 34(3), 295–304.

REBEA, E.L., BADAWY, T.E.M., STEVENS, V.C., SMAGGHE, G., STEURBAUT, W. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules, 2003, 4(6), 14571465, doi: 10.1021/bm034130m.

RAAFAT, D., SAHL, H.G. Chitosan and its antimicrobial potential-a critical literature survey. Microbial Biotechnology, 2009, 2(2), 186–201, doi: 10.1111/j.1751-7915.2008.00080.x.

ARANAZ, I., MENGIBAR, M., HARRIS, R., INES, P., ACOSTA, N., GALED, G., HERES, A. Functional characterization of chitin and chitosan. Current Chemical Biology, 2009, 3(2), 203–230, doi: 10.2174/2212796810903020203.

KONG, M., CHEN, G.X., XING, K., PARK, J.H. Antimicrobial properties of chitosan and mode of action: a state of the art review. International Journal of Food Microbiology, 2010, 144(1), 51–63, doi: 10.1016/j.ijfoodmicro.2010.09.012.

FRAS, L., RISTIČ, T., TKAVC, T. Adsorption and antibacterial activity of soluble and precipitated chitosan on cellulose viscose fibers. Journal of Engineered Fibers and Fabrics, , 2012, 7(1), 50–57, doi: 10.1177/155892501200700105.

CAKARA, D., FRAS, L., BRACIC, M., KLEINSCHEK, K.S. Protonation behavior of cotton fabric with irreversibly adsorbed chitosan: a potentiometric titration study. Carbohydrate Polymers, 2009, 78(1), 36–40, doi: 10.1016/j.carbpol.2009.04.011.

MYLLYTIE, P., SALMII, J., LAINE, J. The influence of pH on the adsorption and interaction of chitosan with cellulose. BioResearch, 2009, 4(4), 1647–1662.

JANIC, S., KOSTIC, M., VUCINIC, V., DIMITRIJEVIC, S., POPOVIC, K., RISTIC, M., SKUNDRIC, P. Biologically active fibers based on chitosan-coated lyocell fibers. Carbohydrate Polymers, 2009, 78(2), 240–246, doi: 10.1016/j.carbpol.2009.03.033.

ZEMLJIC, F.L., SAUPERL, O., KREZE, T. STRNAD, S. Characterization of regenerated cellulose fibers antimicrobial functionalized by chitosan. Textile Research Journal, 2013, 83(2), 185–196, doi: 10.1177/0040517512450759.

ZEMLJIC, F.L., SAUPERL, O., BUT, I., ZABRET, A., LUSICKY, M. Viscose material functionalized by chitosan as a potential treatment in gynecology. Textile Research Journal, 2011, 81(11) 1183–1190, doi: 10.1177/0040517510397572.

ZEMLJIČ, F.L., STRNAD, S., ŠAUPERL, O., KLEINSCHEK-STANA, K. Characterization of amino groups for cotton fibers coated with chitosan. Textile Research Journal, 2009, 79(3), 219–226, doi: 10.1177/0040517508093592.

TOSHIKJ, E., TARBUK, A., GRGIĆ, K., MANGOVSKA, B., JORDANOV, I. Influence of different oxidizing systems on cellulose oxidation level: introduced groups versus degradation model. Cellulose, 2019, 26(2), 777–794, doi: 10.1007/s10570-018-2133-4.

TARBUK, A., GRGIĆ, K., TOSHIKJ, E., DOMOVIĆ, D., DIMITROVSKI, D., DIMOVA, V., JORDANOV, I. Monitoring of cellulose oxidation level by electrokinetic phenomena and numeric prediction model. Cellulose, 2020, 27(6), 3107–3119, doi: 10.1007/s10570-020-03028-6.

TOSHIKJ, E, JORDANOV, I., DIMOVA, V., MANGOVSKA, B. The influence of non-selectivwe oxidation on differently pre-treated cotton yarns properties. Materials Science (Medžiagotyra), 2016, 22(3), 429–434, doi: 10.5755/

TOSHIKJ, E., JORDANOV, I., DIMOVA, V., MANGOVSKA, B. Influence of various pre-treatment processes on selective oxidation of cotton yarns. AATCC Journal of Research, 2017, 4(4) 22–28, doi: 10.14504/ajr.4.4.4.

VASLUIANU, E., POPESCU, V., GRIGORIU, A., FORNA, C. N., SANDU, I. Comparative study concering the FTIR analysis and the performances of chitosan-based wrinkle-proofing agents. Rev. Chim. (Bucharest), 2013, 64(10), 1104–1115.

LUK, J.C., YIP, J., YUEN, M.C., KAN, C., LAM, K. A comprehensive study on adsorption behavior of direct, reactive and acid dyes on crosslinked and non-crosslinked chitosan beads. Journal of Fiber Bioengineering and Informatics. 2014, 7(1), 35–52, doi: 10.3993/jfbi03201404.

KUMARISKA, J., CZERWICKA, M., KACZYNSKI, Z., BYCHOWSKA, A., BRZOZWSKI, K., THÖMING, J., STEPNOWSKI, P. Application of spectroscopic methods for structural analysis of chitin and chitosan. Marine Drugs, 2010, 8(5), 1567–1636, doi: 10.3390/md8051567.

ROSCA, C., POPA, M.I., LISA, G., CHITANU, G.C. Interaction of chitosan with natural or synthetic anionic polyelectrolytes. 1. The chitosan-carboxymethylcellulose complex. Carbohydrate Polymers, 2005, 62(1), 35–41, doi: 10.1016/j.carbpol.2005.07.004.

YAVUZ, G., ZILLE, A., SEVENTEKIN, N., SOUTO, A. Structural coloration of chitosan coated cellulose fabrics by electrostatic sefl-assembled poly (styrene-methyl methacrylate-acrylic acid) photonic crystal. Carbohydrate Polymers, 2018, 193, 343–352, doi: 10.1016/j.carbpol.2018.03.084.

FU, X., SHEN, Y., JIANG, X., HUANG, D., YAN, Y. Chitosan derivatives with dual-antimicrobial functional groups for antimicrobial finishing of cotton fabrics. Carbohydrate Polymers, 2011, 85(1), 221–227, doi: 10.1016/j.carbpol.2011.02.019.

FERRERO, F., PERIOLATTO, M., FERRARIO, S. Sustainable antimicrobial finishing of cotton fabrics by chitosan UV-grafting: form laboratory experiments to semi industrial scal-up. Journal of Cleaner Production, 2015, 96, 244–252, doi: 10.1016/j.jclepro.2013.12.044.






Scientific article


How to Cite

Toshikj, E., Petrovski , O., Petrovska , M., & Jordanov, I. (2023). Antimicrobial Active Chitosan-Based Cotton Yarns: Effect of Chitosan Solution Concentration. Tekstilec, 66, 116-125.

Similar Articles

1-10 of 26

You may also start an advanced similarity search for this article.