Izboljšanje ojačitve betonskih nosilcev s pletenimi kompozitnimi palicami iz polipropilenskih vrvic
DOI:
https://doi.org/10.14502/tekstilec.66.2022108Ključne besede:
pletenina, cement, gradbeništvo, malta, trdnostPovzetek
Tehnične tkanine so zaradi mnogoterih lastnosti pomembne v številnih panogah. Namen te raziskave je bil uporabiti pletene kompozitne palice za ojačitev betonskih nosilcev. Pletene vrvice, izdelane iz polipropilenskih prej v zunanji plasti in jedra iz združenih prej, so bile potopljene v lokalno dostopno epoksi smolo Kemapoxy 150. Izdelanih je bilo šest vzorcev pletenih kompozitnih palic iz dveh polipropilenskih prej različne dolžinske mase in tremi različnimi jedri. Opravljenih je bilo več testiranj pletenih vrvic in pletenih kompozitnih palic. Vse meritve so bile statistično analizirane (ANOVA) in prikazane s pomočjo polarnih grafikonov. Izdelani so bili trije betonski nosilci z eno, dvema oziroma tremi pletenimi kompozitnimi palicami. Rezultati so pokazali, da različne preje v zunanji plasti in jedru pomembno vplivajo na lastnosti pletenih vrvic in pletenih kompozitnih palic. Pletene kompozitne palice z jedrom iz polipropilenske preje so primerne za betonske nosilce, ki ne zahtevajo velikih obremenitev. Pletene kompozitne palice iz steklenih vlaken oziroma iz 50-odstotkov polipropilenskih in 50-odstotkov polietilenskih vlaken niso primerne za aplikacije, kjer je zahtevana večja upogibljivost in raztegljivost betonskih nosilcev. Pletene kompozitne palice so izboljšale učinkovitost armiranih betonskih nosilcev, pri čemer je bila ugotovljena najvišja upogibna sila pri uporabi dveh palic na betonski nosilec.
Literatura
Handbook of technical textiles. Edited by A. R. Horrocks and S. C. Anand. Cambridge : Woodhead Publishing, 2000, 14.
PARK, K.T., KIM, H.Y., YOU, Y.J., LEE, S.Y., SEO, D.W. Hybrid FRP reinforcing bars for concrete structures. In 4th Asia-Pacific Conference on FRP in Structures, Melbourne, 2013. Ontario : International Institute for FRP in Construction, 2013.
BRÜCKNER, A., ORTLEPP, R., CURBACH, M. Textile reinforced concrete for strengthening in bending and shear. Materials and Structures, 2006, 39(8), 741–748, doi: 10.1617/s11527-005-9027-2.
KURBAK, A., SOYDAN, A.S. Geometrical model for a newly designed three-dimensional functional rib-knitted cord. Textile Research Journal, 2013, 83(9), 971–990, doi: 10.1177/0040517512461702.
AL-KATIB, H.A., ALKHUDERY, H.H., AL-TAMEEMI, H.A. Behavior of polypropylene fibers reinforced concrete modified with high performance cement. International Journal of Civil Engineering and Technology (IJCIET), 2018, 9(5), 10661074.
RAMUJEE, K. Strength properties of polypropylene fiber reinforced concrete. International Journal of Innovative Research in Science, Engineering and Technology, 2013, 2(8), 34093413.
MOHOD, M.V. Performance of polypropylene fibre reinforced concrete. IOSR Journal of Mechanical and Civil Engineering, 2015, 12(1), 2836.
OZGER, O.B., GIRARDI, F., GIANNUZZI, G.M., SALOMONI, V.A., MAJORANA, C.E., FAMBRI, L., DI MAGGIO, R. Effect of nylon fibres on mechanical and thermal properties of hardened concrete for energy storage systems. Materials & Design, 2013, 51, 989997, doi:10.1016/2013.04.085.
ALTOUBAT, Salah, YAZDANBAKHSH, Ardavan, RIEDER, Klaus-Alexander. Shear behaviour of macro-synthetic fibre-reinforced concrete beams without stirrups. Materials Journal, 2009, 106(4), 381389, doi: 10.14359/56659.
NILI, M., AFROUGHSABET, V. The effects of silica fume and polypropylene fibres on the impact resistance and mechanical properties of concrete. Construction and Building Materials, 2010, 24(6), 927933, doi: 10.1016/j.conbuildmat.2009.11.025.
YAO, W., ZHONG, W. Effect of polypropylene fibres on the long-term tensile strength of concrete. Journal of Wuhan University of Technology Materials Science Edition, 2007, 22(1), 5255, doi:10.1007/s11595-005-1052-z.
PORTAL, N.W. Usability of textile reinforced concrete: structural performance, durability and sustainability. PhD thesis. Gothenburg : Chalmers University of Technology, Department of Civil and Environmental Engineering, Division of Structural Engineering Concrete Structures, 2015.
ELGORY, Z.M., ISMAIL ABD EL-AZIZ, M.Y. Use of textile nets to reinforce concrete elements. Egyptian Journal of Chemistry, 2022, 65(131), 919924, doi: 10.21608/ejchem.2022.127989.5892.
ELSAYED, Tarek A., ELHEFNAWY, Amr A., ELDALY, Amr A., GHANEM, Gouda. Hybrid fibre reinforced polymers rebars. Journal of Advanced Materials Covina, 2011, 43(1), 6575.
RICHARDSON, A., DREW, P. Fibre reinforced polymer and steel rebar comparative performance. Structural Survey, 2011, 29(1), 63–74, doi:10.1108/02630801111118412.
ELGORY, Z.M., SEDDIK, K.M., YAHIA, M., EL-GABRY, L.K. The enhancement of the functional properties of polyester microfiber single jersey using some nano-materials. Egyptian Journal of Chemistry, 2020, 63(1), 145154, doi: 10.21608/ejchem.2019.2868.1804.
ABDEL-MEGIED, Z.M., KM, S., EL-AZIZ, M.Y.A. Improve UV protection property of single jersey for summer protective clothes. Journal of Textile & Apparel Technology & Management (JTATM), 2018, 10(3), 19.
FRAAS, V. First national technical approval for textile-reinforced concrete [online]. BFT International [accessed 25. 4. 2023]. Available on World Wide Web: <https://www.bft-international.com/en/artikel/bft_First_national_technical_approval_for_textile-reinforced_concrete-2051230.html>.
PANDEY, A. Manufacture of advanced textile composites: project. Glasgow : University of Glasgow, 2009-2011.
CHUDOBA, R., VOŘECHOVSKÝ, M., KONRAD, M. Stochastic modeling of multi-filament yarns. I. Random properties within the cross-section and size effect. International Journal of Solids and Structures, 2006, 43(3-4), 413434, doi: 10.1016/j.ijsolstr.2005.06.063.
BS 5441:1988. Methods of test for knitted fabrics. London : BSI Group, 1988.
VENKATARAMAN, K. Study on geometric and dimensional properties of double pique knitted fabrics using cotton sheath elastomeric core yarn. Journal of Textile and Apparel, Technology and Management, 2014, 8(4), 2014, 113.
GRAVAS, E., KIEKENS, P., VAN LANGENHOVE, L. Predicting fabric weight per unit area of single and double-knitted structures using appropriate software. AUTEX Research Journal, 2006, 6(4), 223237.
MUNDEN, D.L. The geometry and dimensional properties of plain-knit fabrics. Journal of the Textile Institute Transactions, 1959, 50(7), T448T471, doi: 10.1080/19447025908659923.
ABRAMAVIČIŪTĖ, J., MIKUČIONIENĖ, D., ČIUKAS, R. Structure properties of knits from natural yarns and their combination with elastane and polyamide threads. Materials Science, 2011, 17(1), 4346, doi: 10.5755/j01.ms.17.1.247.
ICHETAONYE, S.I., ICHETAONYE, D.N., OWEN, M.M., AWOSANYA, A., DIM, J.C. Effect of stitch length on the physical properties of (3x1, 4x1, 5x1, 6x1) rib knitted fabrics. International Journal of Fibre and Textile Research, 2013, 3(3), 6365.
ASTM D3776. Standard test methods for mass per unit area (weight) of fabric. West Conshohocken : ASTM International, 2020.
ASTM D1777. Standard test method for thickness of textile materials. West Conshohocken : ASTM International, 2019.
ASTM D1388. Standard test method for stiffness of fabrics. West Conshohocken : ASTM International, 2018.
ASTM D4268. Standard test methods for testing fibre ropes. West Conshohocken : ASTM International, 2002.
ISO 15630-1. Steel for the reinforcement and prestressing of concrete - test methods - part 1: reinforcing bars, rods and wire. Geneva : International Organization for Standardization, 2019.
ASTM C293. Standard test method for flexural strength of concrete. West Conshohocken : ASTM International, 2016.
Prenosi
Objavljeno
Kako citirati
Številka
Rubrike
Licenca
Avtorske pravice (c) 2023 Manar Y. Abd El-Aziz, Z. M. Abdel-Megied, K. M. Seddik (Author)

To delo je licencirano pod Creative Commons Priznanje avtorstva-Deljenje pod enakimi 4.0 mednarodno licenco.