TiO2 and ZnO as Advanced Photocatalysts for Effective Dye Degradation in Textile Wastewater

Authors

  • Barbara Simončič University of Ljubljana, Faculty of Natural Sciences and Engineering, Department of Textiles, Graphic Arts and Design, Ljubljana, Snežniška 5, 1000 Ljubljana, Slovenia Author https://orcid.org/0000-0002-6071-8829
  • Dominika Glažar University of Ljubljana, Faculty of Natural Sciences and Engineering, Department of Textiles, Graphic Arts and Design, Ljubljana, Snežniška 5, 1000 Ljubljana, Slovenia Author

DOI:

https://doi.org/10.14502/tekstilec.66.2023045

Keywords:

titanium dioxide, zinc oxide, photocatalysis, dye degradation, textile wastewater

Abstract

Textile wastewater, which consist of a complex mixture of synthetic dyes and other organic and inorganic compounds derived from various wet chemical textile processes, can have a harmful effect on the environment; therefore, it must be properly treated before being discharged into municipal wastewater treatment plants and natural water bodies. In this scientific review, the main physical, chemical and biological processes for the removal of dyes from textile wastewater are presented, focusing on photocatalysis, which is a promising advanced oxidation process. The mechanism of photocatalysis is described and the methods used to determine the efficiency of photocatalytic degradation of dyes are presented. Recent studies involving single photocatalytic treatments of real textile wastewaters in the presence of TiO2 and ZnO as catalysts are presented. The advantages of combined processes of photocatalysis in conjunction with other chemical, physical and biological treatments to increase the efficiency of wastewater treatment are discussed. Accordingly, photocatalysis combined with H2O2, photocatalytic ozonation, a hybrid system of photocatalysis and membrane filtration, and coupled photocatalytic-biological processes are described.

Downloads

Download data is not yet available.

References

KANT, R. Textile dyeing industry an environmental hazard. Natural Science, 2012, 4(1), 22–26, doi: 10.4236/ns.2012.41004. DOI: https://doi.org/10.4236/ns.2012.41004

DIHOM, H.R., AL-SHAIBANI, M.M., RADIN MOHAMED, R.M.S., AL-GHEETHI, A.A., SHARMA, A., BIN KHAMIDUN, M.H. Photocatalytic degradation of disperse azo dyes in textile wastewater using green zinc oxide nanoparticles synthesized in plant extract: a critical review. Journal of Water Process Engineering, 2022, 47, 1–12, doi: 10.1016/j.jwpe.2022.102705. DOI: https://doi.org/10.1016/j.jwpe.2022.102705

NUR, A.S.M., SULTANA, M., MONDAL, A., ISLAM, S., ROBEL, F.N., ISLAM, A., SUMI, MST.S.A. A review on the development of elemental and codoped TiO2 photocatalysts for enhanced dye degradation under UV–Vis irradiation. Journal of Water Process Engineering, 2022, 47, 1–17, doi: 10.1016/j.jwpe.2022.102728. DOI: https://doi.org/10.1016/j.jwpe.2022.102728

AL-TOHAMY, R., ALI, S.S., LI, F., OKASHA, K.M., MAHMOUD, Y.A.G., ELSAMAHY, T., JIAO, H., FU, Y., SUN, J. A critical review on the treatment of dye-containing wastewater: ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol and Environmental Safety, 2022, 231, 1–17, doi: 10.1016/j.ecoenv.2021.113160. DOI: https://doi.org/10.1016/j.ecoenv.2021.113160

DHRUV PATEL, D., BHATT, S. Environmental pollution, toxicity profile, and physico-chemical and biotechnological approaches for treatment of textile wastewater. Biotechnology and Genetic Engineering Reviews, 2022, 38(1), 33–86, doi: 10.1080/02648725.2022.2048434. DOI: https://doi.org/10.1080/02648725.2022.2048434

WANG, X., JIANG, J., GAO, W. Reviewing textile wastewater produced by industries: characteristics, environmental impacts, and treatment strategies. Water Science & Technology, 2022, 85(7), 2076–2096, doi: 10.2166/wst.2022.088. DOI: https://doi.org/10.2166/wst.2022.088

VANDEVIVERE, P.C., BIANCHI, R., VERSTRAETE, W. Review: Treatment and reuse of wastewater from the textile wet-processing industry: review of emerging technologies. Journal of Chemical Technology & Biotechnology, 1998, 72(4), 289–302, doi: 10.1002/(SICI)1097-4660(199808)72:4<289::AID-JCTB905>3.0.CO;2-%23. DOI: https://doi.org/10.1002/(SICI)1097-4660(199808)72:4<289::AID-JCTB905>3.0.CO;2-#

SARATALE, R.G., SARATALE, G.D., KALYANI, D.C., CHANG, J.S., GOVINDWAR, S.P. Enhanced decolorization and biodegradation of textile azo dye Scarlet R by using developed microbial consortium-GR. Bioresour Technol, 2009, 100(9), 2493–2500, doi: 10.1016/j.biortech.2008.12.013. DOI: https://doi.org/10.1016/j.biortech.2008.12.013

SELVARAJ, V., SWARNA KARTHIKA, T., MANSIYA, C., ALAGAR, M. An over review on recently developed techniques, mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications. Journal of Molecular Structure, 2021, 1224, 1–15, doi: 10.1016/j.molstruc.2020.129195. DOI: https://doi.org/10.1016/j.molstruc.2020.129195

HOLKAR, C.R., JADHAV, A.J., PINJARI, D. V., MAHAMUNI, N.M., PANDIT, A.B. A critical review on textile wastewater treatments: possible approaches. Journal of Environmental Management, 2016, 182, 351–366, doi: 10.1016/j.jenvman.2016.07.090. DOI: https://doi.org/10.1016/j.jenvman.2016.07.090

BHATIA, D., SHARMA, N.R., SINGH, J., KANWAR, R.S. Biological methods for textile dye removal from wastewater: a review. Critical Reviews in Environmental Science and Technology, 2017, 47(19), 1836–1876, doi: 10.1080/10643389.2017.1393263. DOI: https://doi.org/10.1080/10643389.2017.1393263

YASEEN, D.A., SCHOLZ, M. Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. International Journal of Environmental Science and Technology, 2019, 16, 1193–1226, doi: 10.1007/s13762-018-2130-z. DOI: https://doi.org/10.1007/s13762-018-2130-z

ROŠ, M. Sodobni postopki čiščenja odpadnih vod. Celje : Fit media, 2015, 87–107.

HUANG, X., BO, X., ZHAO, Y., GAO, B., WANG, Y., SUN, S., YUE, Q., LI, Q. Effects of compound bioflocculant on coagulation performance and floc properties for dye removal. Bioresource Technology, 2014, 165, 116–121, doi: 10.1016/j.biortech.2014.02.125. DOI: https://doi.org/10.1016/j.biortech.2014.02.125

BRILLAS, E., MARTÍNEZ-HUITLE, C.A. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Applied Catalysis B: Envitonmental, 2015, 166–167, 603–643, doi: 10.1016/j.apcatb.2014.11.016. DOI: https://doi.org/10.1016/j.apcatb.2014.11.016

LIU, H., WANG, C., WANG, G. Photocatalytic advanced oxidation processes for water treatment: Recent advances and perspective. Chemistry – An Asian Journal, 2020, 15(20), 3239–3253, doi: 10.1002/asia.202000895. DOI: https://doi.org/10.1002/asia.202000895

HASSAAN, M.A., EL NEMR, A. Advanced oxidation processes for textile wastewater treatment. International Journal of Photochemistry and Photobiology, 2017, 2(3), 85–93, doi: 10.11648/j.ijpp.20170203.13.

PANDIAN, L., RAJASEKARAN, R., GOVINDAN, P. Synergistic effect of ozone on cadmium doped zinc oxide nanocatalyst for the degradation of textile dyeing wastewater. Materials Research Express, 2019, 6, 1–8, doi: 10.1088/2053-1591/ab1da6. DOI: https://doi.org/10.1088/2053-1591/ab1da6

XU, M., WU, C., ZHOU, Y. Advancements in the Fenton process for wastewater treatment. In Advanced Oxidation Processes. Edited by C. Bustillo-Lecompte. Rijeka : IntechOpen, 2020, p. 1–17. doi: 10.5772/intechopen.90256. DOI: https://doi.org/10.5772/intechopen.90256

PIPIL, H., YADAV, S., CHAWLA, H., TANEJA, S., VERMA, M., SINGLA, N., HARITASH, A.K. Comparison of TiO2 catalysis and Fenton’s treatment for rapid degradation of Remazol Red dye in textile industry effluent. Rendiconti Lincei. Scienze Fisiche e Naturali, 2022, 33, 105–114, doi: 10.1007/s12210-021-01040-x. DOI: https://doi.org/10.1007/s12210-021-01040-x

LI, S., ZHANG, C., LI, F., HUA, T., ZHOU, Q., HO, S.-H. Technologies towards antibiotic resistance genes (ARGs) removal from aquatic environment: A critical review. Journal of Hazardous Materials, 2021, 411, 1–13, doi: 10.1016/j.jhazmat.2021.125148. DOI: https://doi.org/10.1016/j.jhazmat.2021.125148

DA SILVA, L.S., GONÇALVES, M.M.M., RADDI DE ARAUJO, L.R. Combined photocatalytic and biological process for textile wastewater treatments. Water Environment Research, 2019, 91(11), 1490–1497, doi: 10.1002/wer.1143. DOI: https://doi.org/10.1002/wer.1143

KAYA, Ş., AŞÇI, Y. Evaluation of color and COD removal by Fenton and photo-Fenton processes from industrial paper wastewater. Journal of the Institute of Science and Technology, 2019, 9(3), 1539–1550, doi: 10.21597/jist.507181. DOI: https://doi.org/10.21597/jist.507181

MACHULEK, A., QUINA, F., GOZZI, F., SILVA, V., FRIEDRICH, L., MORAES, J. Fundamental mechanistic studies of the photo-Fenton reaction for the degradation of organic pollutants. In Organic Pollutants Ten Years After the Stockholm Convention - Environmental and Analytical Update. Edited by T. Puzyn, A. Mostrag. London : IntechOpen, 2012, 271–292, doi: 10.5772/30995. DOI: https://doi.org/10.5772/30995

GUO, R., WANG, J., BI, Z. XU, CHEN, X., HU, X., PAN, W. Recent advances and perspectives of g–C3N4–based materials for photocatalytic dyes degradation. Chemosphere, 2022, 295, 1–17, doi: 10.1016/j.chemosphere.2022.133834. DOI: https://doi.org/10.1016/j.chemosphere.2022.133834

WANG, L., ZHAO, J., LIU, H., HUANG, J. Design, modification and application of semiconductor photocatalysts. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93, 590–602, doi: 10.1016/j.jtice.2018.09.004. DOI: https://doi.org/10.1016/j.jtice.2018.09.004

CARP, O., HUISMAN, C.L., RELLER, A. Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 2004, 32(1–2), 33–177, doi: 10.1016/j.progsolidstchem.2004.08.001. DOI: https://doi.org/10.1016/j.progsolidstchem.2004.08.001

SCHNEIDER, J., MATSUOKA, M., TAKEUCHI, M., ZHANG, J., HORIUCHI, Y., ANPO, M., BAHNEMANN, D.W. Understanding TiO2 photocatalysis: mechanisms and materials. Chemical Reviews, 2014, 114(19), 9919–9986, doi: 10.1021/cr5001892. DOI: https://doi.org/10.1021/cr5001892

NAM, Y., LIM, J.H., KO, K.C., LEE, J.Y. Photocatalytic activity of TiO2 nanoparticles: a theoretical aspect. Journal of Materials Chemistry A, 2019, 7, 13833–13859, doi: 10.1039/c9ta03385h. DOI: https://doi.org/10.1039/C9TA03385H

KOE, W.S., LEE, J.W., CHONG, W.C., PANG, Y.L., SIM, L.C. An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane. Environmental Science and Pollution Research, 2020, 27, 2522–2565, doi: 10.1007/s11356-019-07193-5. DOI: https://doi.org/10.1007/s11356-019-07193-5

RASHID, M.M., SIMONČIČ, B., TOMŠIČ, B. Recent advances in TiO2-functionalized textile surfaces. Surfaces and Interfaces, 2021, 22, 1–33, doi: 10.1016/j.surfin.2020.100890. DOI: https://doi.org/10.1016/j.surfin.2020.100890

VERBIČ, A., GORJANC, M., SIMONČIČ, B. Zinc oxide for functional textile coatings: recent advances. Coatings, 2019, 9(9), 1–26, doi: 10.3390/coatings9090550. DOI: https://doi.org/10.3390/coatings9090550

FU, J., CHEN, Z., WANG, M., LIU, S., ZHANG, J., ZHANG, J., HAN, R., XU, Q. Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis. Chemical Engineering Journal, 2015, 259, 53–61, doi: 10.1016/j.cej.2014.07.101. DOI: https://doi.org/10.1016/j.cej.2014.07.101

GHAFOOR, S., INAYAT, A., AFTAB, F., DURAN, H., KIRCHHOFF, K., WASEEM, S., ARSHAD, S.N. TiO2 nanofibers embedded with g-C3N4 nanosheets and decorated with Ag nanoparticles as Z-scheme photocatalysts for environmental remediation. J Environ Chem Eng, 2019, 7(6), 1–10, doi: 10.1016/j.jece.2019.103452. DOI: https://doi.org/10.1016/j.jece.2019.103452

LIU, Y., REN, M., ZHANG, X., YANG, G., QIN, L., MENG, J., GUO, Y. Supramolecule self-assembly approach to direct Z-scheme TiO2/g-C3N4 heterojunctions for efficient photocatalytic degradation of emerging phenolic pollutants. Applied Surface Science, 2022, 593, 1–15, doi: 10.1016/j.apsusc.2022.153401. DOI: https://doi.org/10.1016/j.apsusc.2022.153401

ISARI, A.A., PAYAN, A., FATTAHI, M., JORFI, S., KAKAVANDI, B. Photocatalytic degradation of rhodamine B and real textile wastewater using Fe-doped TiO2 anchored on reduced graphene oxide (Fe-TiO2/rGO): characterization and feasibility, mechanism and pathway studies. Applied Surface Science, 2018, 462, 549–564, doi: 10.1016/j.apsusc.2018.08.133. DOI: https://doi.org/10.1016/j.apsusc.2018.08.133

YE, Z., KONG, L., CHEN, F., CHEN, Z., LIN, Y., LIU, C. A comparative study of photocatalytic activity of ZnS photocatalyst for degradation of various dyes. Optik (Stuttg), 2018, 164, 345–354, doi: 10.1016/j.ijleo.2018.03.030. DOI: https://doi.org/10.1016/j.ijleo.2018.03.030

SHEN, R., JIANG, C., XIANG, Q., XIE, J., LI, X. Surface and interface engineering of hierarchical photocatalysts. Applied Surface Science, 2019, 471, 43–87, doi: 10.1016/j.apsusc.2018.11.205. DOI: https://doi.org/10.1016/j.apsusc.2018.11.205

ETACHERI, V., DI VALENTIN, C., SCHNEIDER, J., BAHNEMANN, D., PILLAI, S.C. Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 25, 1–29, doi: 10.1016/j.jphotochemrev.2015.08.003. DOI: https://doi.org/10.1016/j.jphotochemrev.2015.08.003

KUMAR, S.G., RAO, K.S.R.K. Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2 , WO3 and ZnO). Applied Surface Science, 2017, 391, 124–148, doi: 10.1016/j.apsusc.2016.07.081. DOI: https://doi.org/10.1016/j.apsusc.2016.07.081

CHANG, S-MIN, LIU, W-SZU. The roles of surface-doped metal ions (V, Mn, Fe, Cu, Ce, and W) in the interfacial behavior of TiO2 photocatalysts. Appl Catal B, 2014, 156–157, 466–475, doi: 10.1016/j.apcatb.2014.03.044. DOI: https://doi.org/10.1016/j.apcatb.2014.03.044

BLOH, J.Z., DILLERT, R., BAHNEMANN, D.W. Designing optimal metal-doped photocatalysts: Correlation between photocatalytic activity, doping ratio, and particle size. Journal of Physical Chemistry C, 2012, 116(48), 25558–25562, doi: 10.1021/jp307313z. DOI: https://doi.org/10.1021/jp307313z

KHAN, M.R., CHUAN, T.W., YOUSUF, A., CHOWDHURY, M.N.K., CHENG, C.K. Schottky barrier and surface plasmonic resonance phenomena towards the photocatalytic reaction: study of their mechanisms to enhance photocatalytic activity. Catalysis Science & Technology, 2015, 5, 2522–2531, doi: 10.1039/C4CY01545B. DOI: https://doi.org/10.1039/C4CY01545B

XU, Q., ZHANG, L., YU, J., WAGEH, S., AL-GHAMDI, A.A., JARONIEC, M. Direct Z-scheme photocatalysts: principles, synthesis, and applications. Materials Today, 2018, 21(10), 1042–1063, doi: 10.1016/j.mattod.2018.04.008. DOI: https://doi.org/10.1016/j.mattod.2018.04.008

SIRIRERKRATANA, K., KEMACHEEVAKUL, P., CHUANGCHOTE, S. Color removal from wastewater by photocatalytic process using titanium dioxide-coated glass, ceramic tile, and stainless steel sheets. Journal of Cleaner Production, 2019, 215, 123–130, doi: 10.1016/j.jclepro.2019.01.037. DOI: https://doi.org/10.1016/j.jclepro.2019.01.037

SHI, X., ZHANG, Y., LIU, X., JIN, H., LV, H., HE, S., HAO, H., LI, C. A mild in-situ method to construct Fe-doped cauliflower-like rutile TiO2 photocatalysts for degradation of organic dye in wastewater. Catalysts, 2019, 9(5), 1–17, doi: 10.3390/catal9050426. DOI: https://doi.org/10.3390/catal9050426

RAJAGOPAL, S., PARAMASIVAM, B., MUNIYASAMY, K. Photocatalytic removal of cationic and anionic dyes in the textile wastewater by H2O2 assisted TiO2 and micro-cellulose composites. Separation and Purification Technology, 2020, 252, 1–11, doi: 10.1016/j.seppur.2020.117444. DOI: https://doi.org/10.1016/j.seppur.2020.117444

NEZHADALI, A., SHAPOURI, M.R., AMOLI-DIVA, M. Laser and solar light-induced degradation of pollutant dyes using bi-plasmonic Ag-Au nanoparticles-decorated magnetic TiO2 for textile wastewater treatment. Journal of Nanostructures, 2022, 12(1), 45–61, doi: 10.22052/JNS.2022.01.006.

HELMY, E.T., NEMR, A. EL, ARAFA, E., ELDAFRAWY, S., MOUSA, M. Photocatalytic degradation of textile dyeing wastewater under visible light irradiation using green synthesized mesoporous non-metal-doped TiO2. Bulletin of Materials Science, 2021, 44, 1–11, doi: 10.1007/s12034-020-02322-0. DOI: https://doi.org/10.1007/s12034-020-02322-0

CRUZ, D., ORTIZ-OLIVEROS, H.B., FLORES-ESPINOSA, R.M., ÁVILA PÉREZ, P., RUIZ-LÓPEZ, I.I., QUIROZ-ESTRADA, K.F. Synthesis of Ag/TiO2 composites by combustion modified and subsequent use in the photocatalytic degradation of dyes. J King Saud Univ Sci, 2022, 34(4), 1–8, doi: 10.1016/j.jksus.2022.101966. DOI: https://doi.org/10.1016/j.jksus.2022.101966

SHAFIQUE, M., MAHR, M.S., YASEEN, M., BHATTI, H.N. CQD/TiO2 nanocomposite photocatalyst for efficient visible light-driven purification of wastewater containing methyl orange dye. Materials Chemistry and Physics, 2022, 278, 1–14, doi: 10.1016/j.matchemphys.2021.125583. DOI: https://doi.org/10.1016/j.matchemphys.2021.125583

ZAFAR, Z., FATIMA, R., KIM, J.-O. Experimental studies on water matrix and influence of textile effluents on photocatalytic degradation of organic wastewater using Fe–TiO2 nanotubes: Towards commercial application. Environmental Research, 2021, 197, 1–10, doi: 10.1016/j.envres.2021.111120. DOI: https://doi.org/10.1016/j.envres.2021.111120

PONCE, J., PEÑA, J., ROMÁN, J., PASTOR, J.M. Recyclable photocatalytic composites based on natural hydrogels for dye degradation in wastewaters. Separation and Purification Technology, 2022, 299, 1–10, doi: 10.1016/j.seppur.2022.121759. DOI: https://doi.org/10.1016/j.seppur.2022.121759

AHMAD, M.N., MASOOD UL HASSAN, M., NAWAZ, F., ANJUM, M.N., IQBAL, S.Z., HUSSAIN, T., MUJAHID, A., FARID, M.F. Synthesis and characterization of poly(o-chloroaniline)/TiO2 nanocomposites for photocatalytic degradation of direct yellow 50 dye in textile wastewater. Global NEST Journal, 2022, 24(1), 53–58, doi: 10.30955/gnj.004205. DOI: https://doi.org/10.30955/gnj.004205

MIN, K.S., MANIVANNAN, R., SON, Y.-A. Porphyrin dye/TiO2 imbedded PET to improve visible-light photocatalytic activity and organosilicon attachment to enrich hydrophobicity to attain an efficient self-cleaning material. Dyes and Pigments, 2019, 162, 8–17, doi: 10.1016/j.dyepig.2018.10.014. DOI: https://doi.org/10.1016/j.dyepig.2018.10.014

ZHOU, S., XIA, L., ZHANG, K., FU, Z., WANG, Y., ZHANG, Q., ZHAI, L., MAO, Y., XU, W. Titanium dioxide decorated natural cellulosic juncus effusus fiber for highly efficient photodegradation towards dyes. Carbohydrate Polymers, 2020, 232, 1–9, doi: 10.1016/j.carbpol.2020.115830. DOI: https://doi.org/10.1016/j.carbpol.2020.115830

CHANDAN, M.R., GOYAL, S., RIZWAN, M., IMRAN, M., SHAIK, A.H. Removal of textile dye from synthetic wastewater using microporous polymer nanocomposite. Bulletin of Materials Science, 2021, 44, 1–11, doi: 10.1007/s12034-021-02559-3. DOI: https://doi.org/10.1007/s12034-021-02559-3

MESGARI, Z., GHARAGOZLOU, M., KHOSRAVI, A., GHARANJIG, K. SYNTHESIS. Characterization and evaluation of efficiency of new hybrid Pc/Fe-TiO2 nanocomposite as photocatalyst for decolorization of methyl orange using visible light irradiation. Applied Catalysis A: General, 2012, 411–412, 139–145, doi: 10.1016/j.apcata.2011.10.031. DOI: https://doi.org/10.1016/j.apcata.2011.10.031

AKPAN, U.G., HAMEED, B.H. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review. Journal of Hazardous Materials, 2009, 170(2-3), 520–529, doi: 10.1016/j.jhazmat.2009.05.039. DOI: https://doi.org/10.1016/j.jhazmat.2009.05.039

KHATAEE, A.R., KASIRI, M.B. Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes. Journal of Molecular Catalysis A: Chemical, 2010, 328(1–2), 8–26, doi: 10.1016/j.molcata.2010.05.023. DOI: https://doi.org/10.1016/j.molcata.2010.05.023

MAHLAULE-GLORY, L.M., HINTSHO-MBITA, N.C. Green derived zinc oxide (ZnO) for the degradation of dyes from wastewater and their antimicrobial activity: a review. Catalysts, 2022, 12(8), 1–25, doi: 10.3390/catal12080833. DOI: https://doi.org/10.3390/catal12080833

TANWAR, N., DHIMAN, V., KUMAR, S., KONDAL, N. Plant extract mediated ZnO-NPs as photocatalyst for dye degradation: an overview. Materials Today: Proceedings, 2022, 48(5), 1401–1406, doi: 10.1016/j.matpr.2021.09.186. DOI: https://doi.org/10.1016/j.matpr.2021.09.186

AL-BURIAHI, A.K., AL-GHEETHI, A.A., SENTHIL KUMAR, P., RADIN MOHAMED, R.M.S., YUSOF, H., ALSHALIF, A.F., KHALIFA, N.A. Elimination of rhodamine B from textile wastewater using nanoparticle photocatalysts: a review for sustainable approaches. Chemosphere, 2022, 287, 1–14, doi: 10.1016/j.chemosphere.2021.132162. DOI: https://doi.org/10.1016/j.chemosphere.2021.132162

RAHMAN, A., HARUNSANI, M.H., TAN, A.L., KHAN, M.M. Zinc oxide and zinc oxide-based nanostructures: Biogenic and phytogenic synthesis, properties and applications. Bioprocess and Biosystems Engineering, 2021, 44, 1333–1372, doi: 10.1007/s00449-021-02530-w. DOI: https://doi.org/10.1007/s00449-021-02530-w

SÁENZ-TREVIZO, A., AMÉZAGA-MADRID, P., PIZÁ-RUIZ, P., ANTÚNEZ-FLORES, W., MIKI-YOSHIDA, M. Optical band gap estimation of ZnO nanorods. Materials Research, 2016, 19, 33–38, doi: 10.1590/1980-5373-MR-2015-0612. DOI: https://doi.org/10.1590/1980-5373-mr-2015-0612

TALESHI, F. The effect of carbon nanotube on band gap energy of TiO2 nanoparticles. Journal of Applied Spectroscopy, 2015, 82, 303–306, doi: 10.1007/s10812-015-0102-3. DOI: https://doi.org/10.1007/s10812-015-0102-3

PARK, H., PARK, Y., KIM, W., CHOI, W. Surface modification of TiO2 photocatalyst for environmental applications. Journal of Photochemistry and Photobiology, C: Photochemistry Reviews, 2013, 15, 1–20, doi: 10.1016/j.jphotochemrev.2012.10.001. DOI: https://doi.org/10.1016/j.jphotochemrev.2012.10.001

KURNIAWAN, T.A., MENGTING, Z., FU, D., YEAP, S.K., OTHMAN, M.H.D., AVTAR, R., OUYANG, T. Functionalizing TiO2 with graphene oxide for enhancing photocatalytic degradation of methylene blue (MB) in contaminated wastewater. Journal of Environmental Management, 2020, 270, 1–8, doi: 10.1016/j.jenvman.2020.110871. DOI: https://doi.org/10.1016/j.jenvman.2020.110871

POOLWONG, J., KIATBOONYARIT, T., ACHIWAWANICH, S., BUTBUREE, T., KHEMTHONG, P., KITYAKARN, S. Three-dimensional hierarchical porous TiO2 for enhanced adsorption and photocatalytic degradation of Remazol dye. Nanomaterials, 2021, 11(7), 1–11, doi: 10.3390/nano11071715. DOI: https://doi.org/10.3390/nano11071715

KABIR, R., SAIFULLAH, MD.A.K., AHMED, A.Z., MASUM, S.MD., MOLLA, MD.A.I. Synthesis of N-doped ZnO nanocomposites for sunlight photocatalytic degradation of textile dye pollutants. Journal of Composites Science, 2020, 4(2), 1–10, doi: 10.3390/jcs4020049. DOI: https://doi.org/10.3390/jcs4020049

BOUTRA, B., SEBTI, A., TRARI, M. Photocatalytic treatment of synthetic and real textile wastewater using zinc oxide under the action of sunlight. Theoretical and Experimental Chemistry, 2021, 57, 226–236, doi: 10.1007/s11237-021-09692-4. DOI: https://doi.org/10.1007/s11237-021-09692-4

ELBADAWY, H.A., SADIK, W.A., ELHUSSEINY, A.F., HUSSEIN, S.M. Design of economic photocatalytic system with low energy consumption, and high quantum yield, for the degradation of Acid Red 37 textile dye. Process Safety and Environmental Protection, 2021, 148, 1191–1206, doi: 10.1016/j.psep.2021.02.036. DOI: https://doi.org/10.1016/j.psep.2021.02.036

FAZIL, A.A., NARAYANAN, S., BEGUM, M.S., MANIKANDAN, G., YUVASHREE, M. Green synthesis strategy for producing doped and undoped ZnO nanoparticles: Their photocatalytic studies for industrial dye degradation. Water Science and Technology, 2021, 84(10–11), 2958–2967, doi: 10.2166/wst.2021.308. DOI: https://doi.org/10.2166/wst.2021.308

YASHNI, G., AL-GHEETHI, A., RADIN MOHAMED, R.M.S., DAI-VIET, N.V., AL-KAHTANI, A.A., AL-SAHARI, M., NOR HAZHAR, N.J., NOMAN, E., ALKHADHER, S. Bio-inspired ZnO NPs synthesized from Citrus Sinensis peels extract for Congo red removal from textile wastewater via photocatalysis: Optimization, mechanisms, techno-economic analysis. Chemosphere, 2021, 281, 1–12, doi: 10.1016/j.chemosphere.2021.130661. DOI: https://doi.org/10.1016/j.chemosphere.2021.130661

SHARMA, M., SONDHI, H., KRISHNA, R., SANJEEV KUMAR, S., RAJPUT, P., NIGAM, S., JOSHI, M. Assessment of GO/ZnO nanocomposite for solar-assisted photocatalytic degradation of industrial dye and textile effluent. Environmental Science and Pollution Research, 2020, 27, 32076–32087, doi: 10.1007/s11356-020-08849-3. DOI: https://doi.org/10.1007/s11356-020-08849-3

ABDEL-WAHED, M.S., ABDEL-KARIM, A., MARGHA, F.H., GAD-ALLAH, T.A. UV sensitive ZnO and TiO2-ZnO nanocrystalline transparent glass-ceramic materials for photocatalytic decontamination of surface water and textile industry wastewater. Environmental Progress & Sustainable Energy, 2021, 40(5), 1–11, doi: 10.1002/ep.13653. DOI: https://doi.org/10.1002/ep.13653

JUAY, J., YANG, J.C.E., BAI, H., SUN, D.D. Novel ultralong and photoactive Bi2Ti4O11/TiO2 heterojunction nanofibers toward efficient textile wastewater treatment. RSC Advances, 2022, 12(39), 25449–25456, doi: 10.1039/d2ra02181a. DOI: https://doi.org/10.1039/D2RA02181A

PAŹDZIOR, K., BILIŃSKA, L. Microscopic analysis of activated sludge in industrial textile wastewater treatment plant. Autex Research Journal, 2022, 22(3), 358–364, doi: 10.2478/aut-2020-0050. DOI: https://doi.org/10.2478/aut-2020-0050

ANCY, K., BINDHU, M.R., BAI, J.S., GATASHEH, M.K., HATAMLEH, A.A., ILAVENIL, S. Photocatalytic degradation of organic synthetic dyes and textile dyeing waste water by Al and F co-doped TiO2 nanoparticles. Environmental Research, 2022, 206, 1–9, doi: 10.1016/j.envres.2021.112492. DOI: https://doi.org/10.1016/j.envres.2021.112492

WANG, Y., LU, K., FENG, C. Influence of inorganic anions and organic additives on photocatalytic degradation of methyl orange with supported polyoxometalates as photocatalyst. Journal of Rare Earths, 2013, 31(4), 360–365, doi: 10.1016/S1002-0721(12)60286-5. DOI: https://doi.org/10.1016/S1002-0721(12)60286-5

MOHAMED, W.A.A., IBRAHEM, I.A., EL-SAYED, A.M., GALAL, H.R., HANDAL, H., MOUSA, H.A., LABIB, A.A. Zinc oxide quantum dots for textile dyes and real industrial wastewater treatment: Solar photocatalytic activity, photoluminescence properties and recycling process. Advanced Powder Technology, 2020, 31(6), 2555–2565, doi: 10.1016/j.apt.2020.04.017. DOI: https://doi.org/10.1016/j.apt.2020.04.017

AGUSTINA, T.E., ANG, H.M., VAREEK, V.K. A review of synergistic effect of photocatalysis and ozonation on wastewater treatment. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2005, 6(4), 264–273, doi: 10.1016/j.jphotochemrev.2005.12.003. DOI: https://doi.org/10.1016/j.jphotochemrev.2005.12.003

DESA, A.L., HAIROM, N.H.H., NG, L.Y., NG, C.Y., AHMAD, M.K., MOHAMMAD, A.W. Industrial textile wastewater treatment via membrane photocatalytic reactor (mpr) in the presence of ZnO-PEG nanoparticles and tight ultrafiltration. Journal of Water Process Engineering, 2019, 31, 1–11, doi: 10.1016/j.jwpe.2019.100872. DOI: https://doi.org/10.1016/j.jwpe.2019.100872

CERETTA, M.B., VIEIRA, Y., WOLSKI, E.A., FOLETTO, E.L., SILVESTRI, S. Biological degradation coupled to photocatalysis by ZnO/polypyrrole composite for the treatment of real textile wastewater. Journal of Water Process Engineering, 2020, 35, doi: 10.1016/j.jwpe.2020.101230. DOI: https://doi.org/10.1016/j.jwpe.2020.101230

Downloads

Published

2023-08-31

Issue

Section

Scientific article

Categories

How to Cite

Simončič, B., & Glažar, D. (2023). TiO2 and ZnO as Advanced Photocatalysts for Effective Dye Degradation in Textile Wastewater. Tekstilec, 66, 178-198. https://doi.org/10.14502/tekstilec.66.2023045

Similar Articles

1-10 of 75

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)