Tailoring of multifunctional cotton fabric by embedding a TiO2+ZnO composite into a chitosan matrix

Authors

  • Brigita Tomšič University of Ljubljana, Faculty of Natural Sciences and Engineering, Aškerčeva 12, 1000 Ljubljana, Slovenia Author
  • Špela Bajrič University of Ljubljana, Faculty of Natural Sciences and Engineering, Aškerčeva 12, 1000 Ljubljana, Slovenia Author
  • Kaja Cergonja University of Ljubljana, Faculty of Natural Sciences and Engineering, Aškerčeva 12, 1000 Ljubljana, Slovenia Author
  • Gracija Čepič University of Ljubljana, Faculty of Natural Sciences and Engineering, Aškerčeva 12, 1000 Ljubljana, Slovenia Author
  • Ana Gerl University of Ljubljana, Faculty of Natural Sciences and Engineering, Aškerčeva 12, 1000 Ljubljana, Slovenia Author
  • Egshig Ladislav Varga University of Ljubljana, Faculty of Natural Sciences and Engineering, Aškerčeva 12, 1000 Ljubljana, Slovenia Author
  • Marina Panoska University of Ljubljana, Faculty of Natural Sciences and Engineering, Aškerčeva 12, 1000 Ljubljana, Slovenia Author
  • Svjetlana Peulić University of Ljubljana, Faculty of Natural Sciences and Engineering, Aškerčeva 12, 1000 Ljubljana, Slovenia Author
  • Jasna Skoko University of Ljubljana, Faculty of Natural Sciences and Engineering, Aškerčeva 12, 1000 Ljubljana, Slovenia Author
  • Marija Gorjanc University of Ljubljana, Faculty of Natural Sciences and Engineering, Aškerčeva 12, 1000 Ljubljana, Slovenia Author
  • Barbara Simončič University of Ljubljana, Faculty of Natural Sciences and Engineering, Aškerčeva 12, 1000 Ljubljana, Slovenia Author https://orcid.org/0000-0002-6071-8829

DOI:

https://doi.org/10.14502/tekstilec.66.2023049

Keywords:

titanium dioxide, zinc oxide, chitosan, coating, cotton, UV protection, antimicrobial activity, photocatalytic self-cleaning

Abstract

The use of nanomaterials to functionalise textiles offers new opportunities for chemical modification of textile fibres’ surfaces to achieve multifunctional protective properties. In this study, novel coatings were tailored on cotton fabric by embedding a mixture of TiO2 and ZnO nanoparticles (NPs) of different molar ratios into a chitosan polymer matrix. The excitation energies of the TiO2+ZnO composites generated in the coatings ranged from 3.20 eV to 3.25 eV, indicating that the photocatalytic performance of the functionalised cotton was driven by UV light. The presence of TiO2+ZnO composites increased the UV protection factor (UPF) of the cotton fabric from 4.2 for the untreated sample to 15–21 for the functionalised samples. The UPF values of the coatings slightly decreased after repeated washing. The ZnO in the TiO2+ZnO composites conferred biocidal activity to the coatings, which were resistant to washing at higher ZnO concentrations. In addition, the TiO2 in the TiO2+ZnO composites was responsible for the enhanced photocatalytic self-cleaning of the functionalised cotton, which was observed during the initial period of illumination at lower ZnO concentrations in the composite. The main advantage of these TiO2+ZnO composite coatings is their multifunctionality, which cannot be provided by single-component TiO2 or ZnO coatings. Moreover, these coatings have wide-ranging practical applications, as they were composed of commercially available nanomaterials and were applied using conventional pad–dry–cure equipment.

Downloads

Download data is not yet available.

References

RADETIĆ, M. Functionalization of textile materials with TiO2 nanoparticles. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013, 16, 62–76, doi: 10.1016/j.jphotochemrev.2013.04.002.

RIVERO, P.J., URRUTIA, A., GOICOECHEA, J., ARREGUI, F.J. Nanomaterials for functional textiles and fibers. Nanoscale Research Letters, 2015, 10, 1–22, doi: 10.1186/s11671-015-1195-6.

VERBIČ, A., GORJANC, M., SIMONČIČ, B. Zinc oxide for functional textile coatings: recent advances. Coatings, 2019, 9(9), 1–26, doi: 10.3390/coatings9090550.

ANAYA-ESPARZA, L.M., RUVALCABA-GÓMEZ, J.M., MAYTORENA-VERDUGO, C.I., GONZÁLEZ-SILVA, N., ROMERO-TOLEDO, R., AGUILERA-AGUIRRE, S., PÉREZ-LARIOS, A., MONTALVO-GONZÁLEZ, E. Chitosan-TiO2: a versatile hybrid composite. Materials, 2020, 13(4), 1–27, doi: 10.3390/ma13040811.

GRANADOS, A., PLEIXATS, R., VALLRIBERA, A. Recent advances on antimicrobial and anti-inflammatory cotton fabrics containing nanostructures. Molecules, 2021, 26(10), 1–22, doi: 10.3390/molecules26103008.

RASHID, M.M., SIMONČIČ, B., TOMŠIČ, B. Recent advances in TiO2-functionalized textile surfaces. Surfaces and Interfaces, 2021, 22, 1–33, doi: 10.1016/j.surfin.2020.100890.

BANDARA, T.M.W.J., HANSADI, J.M.C., BELLA, F. A review of textile dye-sensitized solar cells for wearable electronics. Ionics, 2022, 28, 2563–2583, doi: 10.1007/s11581-022-04582-8.

ABOU ELMAATY, T.M., ELSISI, H., ELSAYAD, G., ELHADAD, H., PLUTINO, M.R. Recent advances in functionalization of cotton fabrics with nanotechnology. Polymers, 2022, 14(20), 1–17, doi: 10.3390/polym14204273.

DEJENE, B.K., GELETAW, T.M. A review of plant-mediated synthesis of zinc oxide nanoparticles for self-cleaning textiles. Research Journal of Textile and Apparel, 2023, ahead-of-print, doi: 10.1108/RJTA-12-2022-0154.

LIU, G., YANG, H.G., PAN, J., YANG, Y.Q., LU, G.Q.M., CHENG, H.M. Titanium dioxide crystals with tailored facets. Chemical Reviews, 2014, 114(19), 9559–9612, doi: 10.1021/cr400621z.

PARIHAR, V., RAJA, M., PAULOSE, R. A brief review of structural, electrical and electrochemical properties of zinc oxide nanoparticles. Reviews on Advanced Materials Science, 2018, 53, 119–130, doi: 10.1515/rams-2018-0009.

NAM, Y., LIM, J.H., KO, K.C., LEE, J.Y. Photocatalytic activity of TiO2 nanoparticles: a theoretical aspect. Journal of Materials Chemistry A, 2019, 7(23), 13833–13859, doi: 10.1039/c9ta03385h.

SHEN, R., JIANG, C., XIANG, Q., XIE, J., LI, X. Surface and interface engineering of hierarchical photocatalysts. Applied Surface Science, 2019, 471, 43–87, doi: 10.1016/j.apsusc.2018.11.205.

SINGH, J., KUMAR, S., RISHIKESH, MANNA, A.K., SONI, R.K. Fabrication of ZnO–TiO2 nanohybrids for rapid sunlight driven photodegradation of textile dyes and antibiotic residue molecules. Optical Materials, 2020, 107, 1–12, doi: 10.1016/j.optmat.2020.110138.

LIU, S., ZHANG, Q., XU, Z., YANG, S., LIU, H. Surface modification of TiO2/SiO2 composite hydrosol stabilized with polycarboxylic acid on Kroy-process wool fabric. Journal of Adhesion Science and Technology, 2017, 31(11), 1209–1228, doi: 10.1080/01694243.2016.1249687.

MARKOVIĆ, D., DEEKS, C., NUNNEY, T., RADOVANOVIĆ, Ž., RADOIČIĆ, M., ŠAPONJIĆ, Z., RADETIĆ, M. Antibacterial activity of Cu-based nanoparticles synthesized on the cotton fabrics modified with polycarboxylic acids. Carbohydrate Polymers, 2018, 200, 173–182, doi: 10.1016/j.carbpol.2018.08.001.

SARWAR, N., ASHRAF, M., MOHSIN, M., REHMAN, A., YOUNUS, A., JAVID, A., IQBAL, K., RIAZ, S. Multifunctional formaldehyde free finishing of cotton by using metal oxide nanoparticles and ecofriendly cross-linkers. Fibers and Polymers, 2019, 20, 2326–2333, doi: 10.1007/s12221-019-9170-y.

IVANUŠA, M., KUMER, B., PETROVČIČ, E., ŠTULAR, D., ZORC, M., JERMAN, I., GORJANC, M., TOMŠIČ, B., SIMONČIČ, B. Eco-friendly approach to produce durable multifunctional cotton fibres using TiO2, ZnO and Ag NPs. Nanomaterials, 2022, 12(18), 1–21, doi: 10.3390/nano12183140.

RASHID, M.M., TOMŠIČ, B., SIMONČIČ, B., JERMAN, I., ŠTULAR, D., ZORC, M. Sustainable and cost-effective functionalization of textile surfaces with Ag-doped TiO2/polysiloxane hybrid nanocomposite for UV protection, antibacterial and self-cleaning properties. Applies Surface Science, 2022, 595, 1–15, doi: 10.1016/j.apsusc.2022.153521.

SILVA, A.O., CUNHA, R.S., HOTZA, D., MACHADO, R.A.F. Chitosan as a matrix of nanocomposites: a review on nanostructures, processes, properties, and applications. Carbohydrate Polymers, 2021, 272, 1–13, doi: 10.1016/j.carbpol.2021.118472.

IBRAHIM, N.A., EID, B.M., EL-AZIZ, E.A., ELMAATY, T.M.A., RAMADAN, S.M. Loading of chitosan – nano metal oxide hybrids onto cotton/polyester fabrics to impart permanent and effective multifunctions. International Journal of Biological Macromolecules, 2017, 105(1), 769–776, doi: 10.1016/j.ijbiomac.2017.07.099.

HOLDER, S.L., LEE, C.H., POPURI, S.R. Simultaneous wastewater treatment and bioelectricity production in microbial fuel cells using cross-linked chitosan-graphene oxide mixed-matrix membranes. Environmental Science and Pollution Research, 2017, 24, 13782–13796, doi: 10.1007/s11356-017-8839-2.

MISHRA, S.K., TEOTIA, A.K., KUMAR, A., KANNAN, S. Mechanically tuned nanocomposite coating on titanium metal with integrated properties of biofilm inhibition, cell proliferation, and sustained drug delivery. Nanomedicine: Nanotechnology, Biology, and Medicine (Nanomedicine: NBM), 2017, 13(1), 23–35, doi: 10.1016/j.nano.2016.08.010.

NIVETHAA, E.A.K., DHANAVEL, S., NARAYANAN, V., STEPHEN, A. Chitosan stabilized Ag-Au nanoalloy for colorimetric sensing and 5-fluorouracil delivery. International Journal of Biological Macromolecules, 2017, 95, 862–872, doi: 10.1016/j.ijbiomac.2016.10.066.

KIM, J.S., LIM, J.K., PARK, J.S. Enhancement of mechanical stability and ionic conductivity of chitosan-based solid polymer electrolytes using silver nanowires as fillers. Bulletin of the Korean Chemical Society, 2019, 40(9), 898–905, doi: 10.1002/bkcs.11844.

ABED, A., BOUAZIZI, N., GIRAUD, S., EL ACHARI, A., CAMPAGNE, C., THOUMIRE, O., EL MOZNINE, R., CHERKAOUI, O., VIEILLARD, J., AZZOUZ, A. Preparation of a novel composite based polyester nonwovens with high mechanical resistance and wash fastness properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577, 604–612, doi: 10.1016/j.colsurfa.2019.05.090.

WU, C., ZHU, Y., WU, T., WANG, L., YUAN, Y., CHEN, J., HU, Y., PANG, J. Enhanced functional properties of biopolymer film incorporated with curcurmin-loaded mesoporous silica nanoparticles for food packaging. Food Chemistry, 2019, 288, 139–145, doi: 10.1016/j.foodchem.2019.03.010.

AZIZ, S.B., KARIM, W.O., GHAREEB, H.O. The deficiency of chitosan: AgNO3 polymer electrolyte incorporated with titanium dioxide filler for device fabrication and membrane separation technology. Journal of Materials Research and Technology, 2020, 9(3), 4692–4705, doi: 10.1016/j.jmrt.2020.02.097.

RODRIGUES, C., DE MELLO, J.M.M., DALCANTON, F., MACUVELE, D.L.P., PADOIN, N., FIORI, M.A., SOARES, C., RIELLA, H.G. Mechanical, thermal and antimicrobial properties of chitosan-based-nanocomposite with potential applications for food packaging. Journal of Polymers and the Environment, 2020, 28, 1216–1236, doi: 10.1007/s10924-020-01678-y.

HUANG, C., PENG, B. Photocatalytic degradation of patulin in apple juice based on nitrogen-doped chitosan-TiO2 nanocomposite prepared by a new approach. LWT – Food Science and Technology, 2021, 140, 1–8, doi: 10.1016/j.lwt.2020.110726.

ZHANG, X., ZHANG, Z., WU, W., YANG, J., YANG, Q. Preparation and characterization of chitosan/nano-ZnO composite film with antimicrobial activity. Bioprocess and Biosystems Engineering, 2021, 44, 1193–1199, doi: 10.1007/s00449-021-02521-x.

XU, Q., WANG, P., ZHANG, Y., LI, C. Durable antibacterial and UV protective properties of cotton fabric coated with carboxymethyl chitosan and Ag/TiO2 composite nanoparticles. Fibers and Polymers, 2022, 23, 386–395, doi: 10.1007/s12221-021-0352-z.

MIDYA, L., SARKAR, A.N., DAS, R., MAITY, A., PAL, S. Crosslinked chitosan embedded TiO2 NPs and carbon dots-based nanocomposite: an excellent photocatalyst under sunlight irradiation. International Journal of Biological Macromolecules, 2020, 164, 3676–3686, doi: 10.1016/j.ijbiomac.2020.08.230.

CHEN, A.H., LIU, S.C., CHEN, C.Y., CHEN, C.Y. Comparative adsorption of Cu(II), Zn(II), and Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin. Journal of Hazardous Materials, 2008, 154(1–3), 184–191, doi: 10.1016/j.jhazmat.2007.10.009.

ZAINAL, Z., HUI, L.K., HUSSEIN, M.Z., ABDULLAH, H.A., HAMADNEH, I.K.R. Characterization of TiO2–Chitosan/Glass photocatalyst for the removal of a monoazo dye via photodegradation–adsorption process. Journal of Hazardous Materials, 2009, 164(1), 138–145, doi: 10.1016/j.jhazmat.2008.07.154.

ABARNA, B., PREETHI, T., RAJARAJESWARI, G.R. Single-pot solid-state synthesis of ZnO/chitosan composite for photocatalytic and antitumour applications. Journal of Materials Science: Materials in Electronics, 2019, 30, 21355–21368, doi: 10.1007/s10854-019-02512-5.

REFAEE, A.A., EL-NAGGAR, M.E., MOSTAFA, T.B., ELSHAARAWY, R.F.M., NASR, A.M. Nano-bio finishing of cotton fabric with quaternized chitosan Schiff base-TiO2-ZnO nanocomposites for antimicrobial and UV protection applications. European Polymer Journal, 2022, 166, 1–11, doi: 10.1016/j.eurpolymj.2022.111040.

KARKARE, M.M. The direct transition and not indirect transition, is more favourable for band gap calculation of anatase TiO2 nanoparticles. International Journal of Scientific & Engineering Research, 2015, 6(12), 48–53.

BERGER-SCHUNN, A. Practical color measurement. New York : John Wiley Sons, 1994, p. 39.

KRUER-ZERHUSEN, N., CANTERO-TUBILLA, B., WILSON, D.B. Characterization of cellulose crystallinity after enzymatic treatment using Fourier transform infrared spectroscopy (FTIR). Cellulose, 2018, 25, 37–48, doi: 10.1007/s10570-017-1542-0.

SOCRATES, G. Infrared and raman characteristic group frequencies: tables and charts. 3rd ed. New York : John Wiley & Sons, 2004.

Downloads

Published

2023-07-07

Issue

Section

Scientific article

Categories

How to Cite

Tomšič, B., Bajrič, Špela, Cergonja, K., Čepič, G., Gerl, A., Varga, E. L., Panoska, M., Peulić, S., Skoko, J., Gorjanc, M., & Simončič, B. (2023). Tailoring of multifunctional cotton fabric by embedding a TiO2+ZnO composite into a chitosan matrix. Tekstilec, 66, 134-147. https://doi.org/10.14502/tekstilec.66.2023049

Similar Articles

1-10 of 32

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)