Viruses and Bacteria – Antiviral and Antibacterial Textile Materials: A Review
DOI:
https://doi.org/10.14502/tekstilec.67.2023072Keywords:
virus classification, antibacterial agents, pandemic, fabric finishingAbstract
Protective textiles, such as antiviral and antimicrobial textiles, are essential for daily human health during pandemics. This paper focused on different studies of bacteria, the classification of viruses and features, different antibacterial and antiviral agents, and the manufacture of antibacterial and antiviral textiles and masks. This review primarily considered the representative specifications of ideal antiviral agents compatible with antimicrobial textile purposes.
Downloads
References
WANG, W.Y., YIM, S.L., WONG, C.H., KAN, C.W. Development of antiviral CVC (Chief Value Cotton) fabric. Polymers, 2021, 13(16), 1–5, doi: 10.3390/polym13162601.
BASAK, S., PACKIRISAMY, G. Nano-based antiviral coatings to combat viral infections. Nano-Structures & Nano-Objects, 2020, 24, 1–12, doi: 10.1016/j.nanoso.2020.100620.
LOUTEN, J. Essential human virology. London : Elsevier, 2017, doi: 10.1016/C2013-0-19118-0.
BAR, G., BISWAS, D., PATI, S., CHAUDHARY, K., BAR, M. Antiviral finishing on textiles - an overview. Textile & Leather Review, 2021, 4(1), 5–22, doi: 10.31881/TLR.2020.17.
Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology, 2020, 5, 536–544, doi: 10.1038/s41564-020-0695-z.
JEREMIAS, S.S., MIYAKAWA, K., MORITA, T., YAMAOKA, Y., RYO, A. Potent antiviral effect of silver nanoparticles on SARS-CoV-2. Biochemical and Biophysical Research Communications, 2020, 533(1), 195–200, doi: 10.1016/j.bbrc.2020.09.018.
JAISWAL, N.K., SAXENA, S.K. Classical coronaviruses. In Coronavirus disease 2019 (COVID-19): epidemiology, pathogenesis, diagnosis, and therapeutics. Edited by S.K. Saxena. Singapore : Springer, 2020, 141–150, doi: 10.1007/978-981-15-4814-7_12.
PAYNE S. Introduction to RNA viruses. In Viruses: from understanding to investigation. London : Elsevier, 2017, 97–105, doi: 10.1016/B978-0-12-803109-4.00010-6.
SILHAVY, T.J. Classic spotlight: gram-negative bacteria have two membranes. Journal of Bacteriology, 2016, 198(2), 201, doi: 10.1128/JB.00599-15.
ARYAL, S. Classification of bacteria in different 9 ways [online]. Microbe Notes [accessed 10. 12. 2023]. Available on World Wide Web: <https://microbenotes.com/classification-of-bacteria/>.
YOUNG, K.D. The selective value of bacterial shape. Microbiology and Molecular Biology Reviews, 2006, 70(3), 660–703, doi: 10.1128/mmbr.00001-06.
MAGLARAS, C., KOENIG, A. Mycoplasma, actinomyces and nocardia. In Small animal critical care medicine. Edited by D.C. Silverstein and K. Hopper. Missouri : Elsevier, 2015, 481–487.
RUIZ, J., WIJFFELS, R.H., DOMINGUEZ, M., BARBOSA, M.J. Heterotrophic vs autotrophic production of microalgae: bringing some light into the everlasting cost controversy. Algal Research, 2022, 64, 1–8, doi: 10.1016/j.algal.2022.102698.
MORITA, R.Y. Psychrophilic bacteria. Bacteriological Reviews, 1975, 39(2), 144–167, doi: 10.1128/mmbr.39.2.144-167.1975.
JIN, Q., KIRK, M.F. pH as a primary control in environmental microbiology: 1. Thermodynamic perspective. Frontiers in Environmental Science, 2018, 6, 1–15, doi: 10.3389/fenvs.2018.00021.
FLANNERY, W.L. Current status of knowledge of Halophilic bacteria. Bacteriological Reviews, 1956, 20(2), 49–66, doi: 10.1128/mmbr.20.2.49-66.1956.
BESKROVNAYA, P., SEXTON, D.L., GOLMOHAMMADZADEH, M., HASHIMI, A., TOCHEVA, E.I. Structural, metabolic and evolutionary comparison of bacterial endospore and exospore formation. Frontiers in Microbiology, 2021, 12, 1–17, doi: 10.3389/fmicb.2021.630573.
MANDAL, B.K. Scopes of green synthesized metal and metal oxide nanomaterials in antimicrobial therapy. In Nanobiomaterials in antimicrobial therapy: applications of nanobiomaterials. Edited by A.M. Grumezescu. Oxford : Elsevier, 2016, 313–341, doi: 10.1016/B978-0-323-42864-4.00009-9.
JENNI, S., BLOYET, L. M., DIAZ-AVALOS, R., LIANG, B., WHELAN, S. P. J., GRIGORIEFF, N., HARRISON, S. C. Structure of the vesicular stomatitis virus L protein in complex with its phosphoprotein cofactor. Cell Reports, 2020, 30(1), 53–60, doi: 10.1016/j.celrep.2019.12.024.
WEI, C., ZHAO, L., SUN, Z., HU, D., SONG, B. Discovery of novel indole derivatives containing dithioacetal as potential antiviral agents for plants. Pesticide Biochemistry and Physiology, 2020, 166, 1–6, doi: 10.1016/j.pestbp.2020.104568.
JANSI, R.S., KHUSRO, A., AGASTIAN, P., ALFARHAN, A., AL-DHABI, N.A., ARASU, M.V., RAJAGOPAL, R., BARCELO, D., AL-TAMIMIl, A. Emerging paradigms of viral diseases and paramount role of natural resources as antiviral agents. Science of the Total Environment, 2021, 759, 1–24, doi: 10.1016/j.scitotenv.2020.143539.
ÖZCELIK, B., ASLAN, M., ORHAN, I., KARAOGLU, T. Antibacterial, antifungal, and antiviral activities of the lipophylic extracts of Pistacia vera. Microbiological Research, 2015, 160(2), 159–164, doi: 10.1016/j.micres.2004.11.002.
LOCHER, C.P., WITVROUW, M., DE BÉHUNE, M.P., BURCH, T., MOVER, H.F., DAVIS, H., LASURE, A., PAUWELS, R., CLERQ, E.D., VLIETINCK, A.J. Antiviral activity of Hawaiian medicinal plants against human immunodeficiency virus type-1 (HIV-1). Phytomedicine, 1996, 2(3), 259–264, doi: 10.1016/S0944-7113(96)80052-3.
HAFID, A.F., AOKI-UTSUBO, C., PERMANASARI, A.A., ADIANTI, M., TUMEWU, L., WIDYAWARUYANTI , A., WAHYUNINGSIH, S.P.A., WAHYUNI, T.S., LUSIDA, M.I., HOTTA, H. Antiviral activity of the dichloromethane extracts from Artocarpus heterophyllus leaves against hepatitis C virus. Asian Pacific Journal of Tropical Biomedicine, 2017, 7(7), 633–639, doi: 10.1016/j.apjtb.2017.06.003.
CHATTOPADHYAY, D., OJHA, D., MONDAL, S., GOSWAMI, D. Validation of antiviral potential of herbal ethnomedicine. In Evidence-based validation of herbal medicine. Edited by P.K. Mukherjee. Amsterdam : Elsevier, 2015, 175–200, doi: 10.1016/B978-0-12-800874-4.00008-8.
SHARAF, S., EL-NAGGAR, M.E. Wound dressing properties of cationized cotton fabric treated with carrageenan/cyclodextrin hydrogel loaded with honey bee propolis extract. International Journal of Biological Macromolecules, 2019, 133, 583–591, doi: 10.1016/j.ijbiomac.2019.04.065.
CHOWDHURY, M.A., SHUVHO, M.B.A., SHAHID, M.A., HAQUE, A.K.M.M., KASHEM, M.A., LAM, S.S., ONG, H.C., UDDIN, M.A., MOFIJUR, M. Prospect of biobased antiviral face mask to limit the coronavirus outbreak. Environmental Research, 2021, 192, 1–5, doi: 10.1016/j.envres.2020.110294.
ORHAN, D.D., ÖZÇELIK, B., ÖZGEN, S., ERGUN, F. Antibacterial, antifungal, and antiviral activities of some flavonoids. Microbiological Research, 2010, 165(6), 496–504, doi: 10.1016/j.micres.2009.09.002.
EL-FAKHARANY, E.M., SAAD, M.H., SALEM, M.S., SIDKEY, N.M. Biochemical characterization and application of a novel lectin from the cyanobacterium Lyngabya confervoides MK012409 as an antiviral and anticancer agent. International Journal of Biological Macromolecules, 2020, 161, 417–430, doi: 10.1016/j.ijbiomac.2020.06.046.
RASHED, K., SAHUC, M.E., DELOISON, G., CALLAND, N., BRODIN, P., ROUILLÉ, Y., SÉRON, K. Potent antiviral activity of Solanum rantonnetii and the isolated compounds against hepatitis C virus in vitro. Journal of Functional Foods, 2014, 11, 185–191, doi: 10.1016/j.jff.2014.09.022.
ZAREI, L., SHAHIDI, S., ELAHI, S.M., BOOCHANI, A. In situ growth of zinc oxide nanoparticles on cotton fabric using sonochemical method. Advanced Materials Research, 2013, 856, 53–59, doi: 10.4028/www.scientific.net/AMR.856.53.
CHEN, L., LIANG, J. An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. Materials Science and Engineering, 2020, 112, 1–15, doi: 10.1016/j.msec.2020.110924.
LI, Y., XIAO, Y., CHEN, Y., HUANG, K. Nano-based approaches in the development of antiviral agents and vaccines. Life Sciences, 2021, 265, 1–11, doi: 10.1016/j.lfs.2020.118761.
BENGALLI, R., COLANTUONI, A., PERELSHTEIN, I., GEDANKEN, A., COLLINI, M., MANTECCA, P., FIANDRA, L. In vitro skin toxicity of CuO and ZnO nanoparticles: application in the safety assessment of antimicrobial coated textiles. Nanoimpact, 2021, 21, 1–11, doi: 10.1016/j.impact.2020.100282.
RAKOWSKA, P.D., TIDDIA, M., FARUQUI, N., BANKIER, C., PEI, Y., POLLARD, A.J., ZHANG, J., GILMORE, I.S. Antiviral surfaces and coatings and their mechanisms of action. Communications Materials, 2021, 2(1), 1–19, doi: 10.1038/s43246-021-00153-y.
MATYJAS-ZGONDEK, E., BACCIARELLI, A., RYBICKI, E., SZYNKOWSKA, M.I., KOŁODZIEJCZYKN, M. Antibacterial properties of silver-finished textiles. Fibres & Textiles in Eastern Europe, 2008, 5(70), 101–107.
MOAZZENCHI, B., MONTAZER, M. Click electroless plating and sonoplating of polyester with copper nanoparticles producing conductive fabric. Fibers and Polymers, 2020, 21, 522–531, doi: 10.1007/s12221-020-9664-7.
SHAHIDI, S., MOAZZENCHI, B. The influence of dyeing on the adsorption of silver and copper particles as antibacterial agents on to cotton fabrics. Journal of Natural Fibers, 2019, 16(5), 677–87, doi: 10.1080/15440478.2018.1431999.
BEHZADNIA, A., MONTAZER, M., RAD, M.M. Simultaneous sonosynthesis and sonofabrication of N-doped ZnO/TiO2 core–shell nanocomposite on wool fabric: introducing various properties specially nano photo bleaching. Ultrasonics Sonochemistry, 2015, 27, 10–21, doi: 10.1016/j.ultsonch.2015.04.017.
YASUYUKI, M., KUNIHIRO, K., KURISSERY, S., KANAVILLIL, N., SATO, Y., KIKUCHI, Y. Antibacterial properties of nine pure metals: a laboratory study using Staphylococcus aureus and Escherichia coli. Biofouling, 2010, 26(7), 851–858, doi: 10.1080/08927014.2010.527000.
MOHANRAJ, R. Antimicrobial activities of metallic and metal oxide nanoparticles from plant extracts. In Antimicrobial nanoarchitectonics: from synthesis to applications. Edited by Alexandru Mihai Grumezescu. Amsterdam : Elsevier, 2017, 83–100, doi: 10.1016/B978-0-323-52733-0.00004-5.
MINOSHIMA, M., LU, Y., KIMURA, T., NAKANO, R., ISHIGURO, H., KUBOTA, Y., HASHIMOTO, K., SUNADA, K. Comparison of the antiviral effect of solid-state copper and silver compounds. Journal of Hazardous Materials, 2016, 312, 1–7, doi: 10.1016/j.jhazmat.2016.03.023.
PUDDU, P., BORGHI, P., GESSANI, S., VALENTI, P., BELARDELLI, F., SEGANTI, L. Antiviral effect of bovine lactoferrin saturated with metal ions on early steps of human immunodeficiency virus type 1 infection. The International Journal of Biochemistry & Cell Biology, 1998, 30(9), 1055–1063, doi: 10.1016/S1357-2725(98)00066-1.
SABRACOS, L., ROMANOU, S., DONTAS, I., COULOCHERI, S., PLOUMIDOU, K., PERRE, D. The in vitro effective antiviral action of povidone-iodine (PVP–I) may also have therapeutic potential by its intravenous administration diluted with Ringer’s solution. Medical Hypotheses, 2007, 68(2), 272–274, doi: 10.1016/j.mehy.2006.07.039.
VO, D.T., SABRINA, S., LEE, C.K. Silver deposited carboxymethyl chitosan-grafted magnetic nanoparticles as dual action deliverable antimicrobial materials. Materials Science and Engineering: C, 2017, 73, 544–551, 10.1016/j.msec.2016.12.066.
CALDERÓN, L., HARRIS, R., CORDOBA-DIAZ, M., ELORZA, M., ELORZA, B., LENOIR, J., ADRIAENS, E., REMON, J.P. Nano and microparticulate chitosan-based systems for antiviral topical delivery. European Journal of Pharmaceutical Sciences, 2013, 48(1–2), 216–222, doi: 10.1016/j.ejps.2012.11.002.
THOMAS, V., BAJPAI, M., BAJPAI, S.K. In situ formation of silver nanoparticles within chitosan-attached cotton fabric for antibacterial property. Journal of Industrial Textiles, 2011, 40(3), 229–245, doi: 10.1177/1528083710371490.
ZHOU, J., HU, Z., ZABIHI, F., CHEN, Z., ZHU, M. Progress and perspective of antiviral protective material. Advanced Fiber Materials, 2020, 2, 123–139, doi: 10.1007/s42765-020-00047-7.
GOLJA, B., TAVČER, P.F. Textile functionalisation by printing fragrant, antimicrobial and flame-retardant microcapsules. Tekstilec, 2016, 59(4), 278–288, doi: 10.14502/Tekstilec2016.59.278-288.
GULATI, R., SHARMA, S., SHARMA, R.K., Antimicrobial textile: recent developments and functional perspective. Polymer Bulletin, 2022, 79(8), 5747–5771, doi: 10.1007/s00289-021-03826-3.
ZHANG, Y., FAN, W., SUN, Y., CHEN, W., ZHANG, Y. Application of antiviral materials in textiles: a review. Nanotechnology Reviews, 2021, 10(1), 1092–1115, doi: 10.1515/ntrev-2021-0072.
TANASA, F., TEACA, C.A., NECHIFOR, M., IGNAT, M., DUCEAC, I.A., IGNAT, L. Highly specialized textiles with antimicrobial functionality – advances and challenges, Textiles, 2023, 3(2), 219–245, doi: 10.3390/textiles3020015.
BONALDI, R.R. Functional finishes for high-performance apparel. In High-performance apparel materials, development, and applications. Edited by John McLoughlin and Tasneem Sabir. Cambridge : Woodhead Publishing, 2018, 129–156, doi: 10.1016/B978-0-08-100904-8.00006-7.
QIU, Q., CHEN, S., LI, Y., YANG, Y., ZHANG, H., Z., QIN, X., WANG, R., YU, J. Functional nanofibers embedded into textiles for durable antibacterial properties. Chemical Engineering Journal, 2020, 384, 1–9, doi: 10.1016/j.cej.2019.123241.
SAUPERL, O. Textiles for protection against microorganism. AIP Conference Proceedings, 2016, 1727, 020021-1–020021-14, doi: 10.1063/1.4945976.
GEDANKEN, A., PERKAS, N., PERELSHTEIN, I., LIPOVSKY, A. Imparting pharmaceutical applications to the surface of fabrics for wound and skin care by ultrasonic waves. Current Medicinal Chemistry, 2018, 25(41), 5739–5754, doi: 10.2174/0929867325666171229141635.
KARIM, N., AFROJ, S., LLOYD, K., OATEN, L.C., ANDREEVA, D.V., CARR, C., FARMERY, A.W., KIM, I.D., NOVOSELOV, K.S. Sustainable personal protective clothing for healthcare applications: a review. ACS Nano, 2020, 14(10), 12313–12340, doi: 10.1021/acsnano.0c05537.
WANG, W.Y., CHIOU, J.C., YIP, J., YUNG, K.F., KAN, C.W. Development of durable antibacterial textile fabrics for potential application in healthcare environment. Coatings, 2020, 10(6), 1–13, doi: 10.3390/coatings10060520.
SHAHIDI, S., GHORANNEVISS, M., MOAZZENCHI, B., RASHIDI, A, MIRJALILI, M. Investigation of antibacterial activity on cotton fabrics with cold plasma in the presence of a magnetic field. Plasma Processes and Polymers, 2007, 4(S1), S1098–S1103, doi: 10.1002/ppap.200732412.
REN, T, DORMITORIO, T.V., QIAO, M., HUANG, T.S., WEESE, J. N-halamine incorporated antimicrobial nonwoven fabrics for use against avian influenza virus. Veterinary Microbiology, 2018, 218, 78–83, doi: 10.1016/j.vetmic.2018.03.032.
GARREN, M.R., ASHCRAFT, M., QIAN, Y., DOUGLASS, M., BRISBOIS, E.J., HANDA, H. Nitric oxide and viral infection: Recent developments in antiviral therapies and platforms. Applied Materials Today, 2021, 22, 1–16, doi: 10.1016/j.apmt.2020.100887.
NORRRAHIM, M.N.F., NURAZZI, N.M., JENOL, M.A., FARID, M.A.A., JANUDIN, N., UJANG, F.A., YASIM-ANUAR, T.A.T., NAJMUDDIN, S.U.F.S., ILYAS, R.A. Emerging development of nanocellulose as an antimicrobial material: an overview. Materials Advances, 2021, 2(11), 3538–3551, doi: 10.1039/d1ma00116g.
IYIGUNDOGDU, Z.U., DEMIR, O., ASUTAY, A.B., SAHIN, F. Developing novel antimicrobial and antiviral textile products. Applied Biochemistry and Biotechnology, 2017, 181, 1155–1165, doi: 10.1007/s12010-016-2275-5.
MACINTYRE, C.R., CHUGHTAI, A.A. A rapid systematic review of the efficacy of face masks and respirators against coronaviruses and other respiratory transmissible viruses for the community, healthcare workers and sick patients. International Journal of Nursing Studies, 2020, 108, 1–6, doi: 10.1016/j.ijnurstu.2020.103629.
PULLANGOTT, G., KANNAN, U., GAYATHRI, S., KIRAN,D.V., MALIYEKKAL, S.M. A comprehensive review on antimicrobial face masks: an emerging weapon in fighting pandemics. RSC Advances, 2021, 11(12), 6544–6576, doi: 10.1039/d0ra10009a.
WU, H.L., HUANG, J., ZHANG, C.J.P., HE, Z., MING, W. K. Facemask shortage and the novel coronavirus disease (COVID-19) outbreak: reflections on public health measures. eClinicalMedicine, 2020, 21, 1–7, doi: 10.1016/j.eclinm.2020.100329.
MALLAKPOUR, S., AZADI, E., HUSSAIN, C.M. Recent breakthroughs of antibacterial and antiviral protective polymeric materials during COVID-19 pandemic and after pandemic: coating, packaging, and textile applications. Current Opinion in Colloid & Interface Science, 2021, 55, 1–39, doi: 10.1016/j.cocis.2021.101480.
BALACHANDAR, V., MAHALAXMI, I., KAAVYA, J., VIVEKANANDHAN, G., AJITHKUMAR, S., ARUL, N., SINGARAVELU, G., KUMAR, N.S., DEVI, S.M. COVID-19: emerging protective measures. European Review for Medical and Pharmacological Sciences, 2020, 24(6), 3422–3425.
TILIKET, G., SAGE, D.L., MOULES, V., ROSA-CALATRAVA, M., LINA, B., VALLETON, J.M., NGUYEN, Q.T., LEBRUN, L. A new material for airborne virus filtration. Chemical Engineering Journal, 2011, 173(2), 341–351, doi: 10.1016/j.cej.2011.07.059.
BORKOW, G., ZHOU, S.S., PAGE, T., GABBAY, J. A novel anti-influenza copper oxide containing respiratory face mask. Plos One, 2010, 5(6), 1–8, doi: 10.1371/journal.pone.0011295.
PolyU develops PU30TM – antiviral, washable & reusable face mask [online]. The Hong Kong Polytechnic University [accessed 14. 4. 2022]. Available on World Wide Web: <https://www.polyu.edu.hk/fast/docdrive/PU30/#top>.
LEE, A. PolyU develops novel anti-virus 3D printing material that terminates over 90% of COVID-19 in 10 minutes [online]. The Hong Kong Polytechnic University [accessed 14. 4. 2022]. Available on World Wide Web: <https://www.polyu.edu.hk/en/media/media-releases/2022/0113_polyu-develops-novel-anti-virus-3d-printing-material-that-terminates-over-90-of-covid-19>.
LEE, K.P., YIP, J., KAN, C.W., CHIOU, J.C., YUNG, K.F. Reusable face masks as alternative for disposable medical masks: factors that affect their wear-comfort. International Journal of Environmental Research and Public Health, 2020, 17(18), 1–16, doi: 10.3390/ijerph17186623.
FADARE, O.O., OKOFFO, E.D. Covid-19 face masks: a potential source of microplastic fibers in the environment. Science of the Total Environment, 2020, 737, 1–4, doi: 10.1016/j.scitotenv.2020.140279.
PINHO, E., MAGALHÃES, L., HENRIQUES, M., OLIVEIRA, R. Antimicrobial activity assessment of textiles: standard methods comparison. Annals of Microbiology, 2011, 61, 493–498, doi: 10.1007/s13213-010-0163-8.
IMOTO, Y., SEINO, S., NAKAGAWA, T., YAMAMOTO, T.A. Quantitative methods for testing antiviral activities of textile fabrics. Journal of Antimicrobial Agents, 2017, 3(3), 1–5, doi: 10.4172/2472-1212.1000146.
SHAHIDI, S., ASLAN, N., GHORANNEVISS, M., KORACHI, M. Effect of thymol on the antibacterial efficiency of plasma-treated cotton fabric. Cellulose, 2014, 21, 1933–1943, doi: 10.1007/s10570-014-0250-2.
ISO 18184:2019. Test determination of antiviral activity of textile products. Geneva : The International Organization for Standardization, 2019, 1–41.
NEFEDOVA, A., RAUSALU, K., ZUSINAITE, E., KISAND, V., KOOK, M., SMITS, K., VANETSEV, A., IVASK. A. Antiviral efficacy of nanomaterial-treated textiles in real-life like exposure conditions. Heliyon, 2023, 9(9), 1–12, doi: 10.1016/j.heliyon.2023.e20067.
SHEN, L., JIANG, J., LIU, J., FU, F., DIAO, H., LIU, X. Cotton fabrics with antibacterial and antiviral properties produced by a simple pad-dry-cure process using diphenolic acid. Applied Surface Science, 2022, 600, 1–10, doi: 10.1016/j.apsusc.2022.154152.
NOVI, V.T., GONZALEZ, A., BROCKGREITENS, J., ABBAS, A. Highly efficient and durable antimicrobial nanocomposite textiles. Scientific Reports, 2022, 12(1), 1–9, doi: 10.1038/s41598-022-22370-2.
Downloads
Published
License
Copyright (c) 2023 Kimiasadat Hosseini Kalahroodi, Sheila Shahidi, Bahareh Moazzenchi, Rattanaphol Mongkholrattanasit (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.