Green In-situ Synthesis of TiO₂ in Combination with Curcuma Longa for the Tailoring of Multifunctional Cotton Fabric


  • Brigita Tomšič University of Ljubljana, Faculty of Natural Sciences and Engineering, Aškerčeva 12, 1000 Ljubljana, Slovenia Author
  • Nika Savnik University of Ljubljana, Faculty of Natural Sciences and Engineering, Aškerčeva 12, 1000 Ljubljana, Slovenia Author
  • Elena Shapkova University of Ljubljana, Faculty of Natural Sciences and Engineering, Aškerčeva 12, 1000 Ljubljana, Slovenia Author
  • Laura Cimperman University of Ljubljana, Faculty of Natural Sciences and Engineering, Aškerčeva 12, 1000 Ljubljana, Slovenia Author
  • Lara Šoba University of Ljubljana, Faculty of Natural Sciences and Engineering, Aškerčeva 12, 1000 Ljubljana, Slovenia Author
  • Marija Gorjanc University of Ljubljana, Faculty of Natural Sciences and Engineering, Aškerčeva 12, 1000 Ljubljana, Slovenia Author
  • Barbara Simončič University of Ljubljana, Faculty of Natural Sciences and Engineering, Aškerčeva 12, 1000 Ljubljana, Slovenia Author



cotton, TiO2, turmeric extract, photocatalytic activity, UV protection


The introduction of green chemistry has become urgent in the development of innovative, high-performance functional textiles to reduce the environmental footprint of their production. This study aims to develop a new eco-friendly process for the hydrothermal in-situ synthesis of TiO2 in cotton fabric and dyeing with curcumin natural dye to produce a photocatalytically active coloured textile platform with simultaneous UV protection properties. Two approaches were developed: classical, which included dyeing of the cotton samples with Curcuma longa (turmeric) extracts at different concentrations (5 g/L, 10 g/L and 15 g/L) and subsequent hydrothermal in-situ synthesis of TiO2 in the presence of the dyed cotton samples, and greener, in which simultaneous dyeing with turmeric extracts and hydrothermal in-situ synthesis of TiO2 were carried out. Since increasing the turmeric concentration hindered the photocatalytic performance of TiO2 in the chemically modified cotton samples, 5 g/L was selected as the most suitable turmeric concentration. A comparison of the chemical modification processes shows that the simultaneous dyeing of cotton with turmeric extract and hydrothermal in-situ synthesis of TiO2 was beneficial and resulted in a UV protection factor 50+, which corresponds to excellent protection category. The photocatalytic activity of TiO2 was maintained in the presence of turmeric, indicating the compatibility of both players in the chemically modified cotton, but not the creation of a turmeric–TiO2 heterojunction with visible-light-driven photocatalysis. The presence of TiO2 inhibited the photodegradation of the curcumin dye, further confirming the compatibility of the two players.


Download data is not yet available.


RIVERO, P.J., URRUTIA, A., GOICOECHEA, J., ARREGUI, F.J. Nanomaterials for functional textiles and fibers. Nanoscale Research Letters, 2015, 10, 1–22, doi: 10.1186/s11671-015-1195-6. DOI:

PRINIOTAKIS, G., MARROT, L., STACHEWICZ, U., KRSTIC-FURUNDZIC, A., VENTURINI, E., JONAITIENE, V. Smart textile for building and living. Autex Research Journal, 2022, 22(4), 493–496, doi: 10.2478/aut-2021-0041. DOI:

SHAH, M.A., PIRZADA, B.M., PRICE, G., SHIBIRU, A.L., QURASHI, A. Applications of nanotechnology in smart textile industry: a critical review. Journal of Advanced Research, 2022, 38, 55–75, doi: 10.1016/j.jare.2022.01.008. DOI:

POPESCU, M., UNGUREANU, C. Green nanomaterials for smart textiles dedicated to environmental and biomedical applications. Materials (Basel), 2023, 16(11), 1–27, doi: 10.3390/ma16114075. DOI:

RADETIĆ, M. Functionalization of textile materials with TiO2 nanoparticles. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013, 16, 62–76, doi: 10.1016/j.jphotochemrev.2013.04.002. DOI:

RASHID, M.M., SIMONČIČ, B., TOMŠIČ, B. Recent advances in TiO2-functionalized textile surfaces. Surfaces and Interfaces, 2021, 22, 1–33, doi: 10.1016/j.surfin.2020.100890. DOI:

ETACHERI, V., DI VALENTIN, C., SCHNEIDER, J., BAHNEMANN, D., PILLAI, S.C. Visible-light activation of TiO2 photocatalysts: advances in theory and experiments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 25, 1–29, doi: 10.1016/j.jphotochemrev.2015.08.003. DOI:

NAM, Y., LIM, J.H., KO, K.C., LEE, J.Y. Photocatalytic activity of TiO2 nanoparticles: a theoretical aspect. Journal of Materials Chemistry A, 2019, 7, 13833–13859, doi: 10.1039/c9ta03385h. DOI:

EID, B.M., IBRAHIM, N.A. Recent developments in sustainable finishing of cellulosic textiles employing biotechnology. Journal of Cleaner Production, 2021, 284, 1–22, doi: 10.1016/j.jclepro.2020.124701. DOI:

WANG, X., JIANG, J., GAO, W. Reviewing textile wastewater produced by industries: characteristics, environmental impacts, and treatment strategies. Water Science & Technology, 2022, 85(7), 2076–2096, doi: 10.2166/wst.2022.088. DOI:

RAJ, A., CHOWDHURY, A., ALI, S.W. Green chemistry: its opportunities and challenges in colouration and chemical finishing of textiles. Sustainable Chemistry and Pharmacy, 2022, 27, 1–17, doi: 10.1016/j.scp.2022.100689. DOI:

HUSTON, M., DEBELLA, M., DIBELLA, M., GUPTA, A. Green synthesis of nanomaterials. Nanomaterials, 2021, 11(8), 1–29, doi: 10.3390/nano11082130. DOI:

SAMUEL, M.S., RAVIKUMAR, M., JOHN, A., SELVARAJAN, E., PATEL, H., CHANDER, P.S., SOUNDARYA, J., VUPPALA, S., BALAJI, R., CHANDRASEKAR, N. A review on green synthesis of nanoparticles and their diverse biomedical and environmental applications. Catalysts, 2022, 12(5), 1–24, doi: 10.3390/catal12050459. DOI:

GUPTA, D., BOORA, A., THAKUR, A., GUPTA, T.K. Green and sustainable synthesis of nanomaterials: recent advancements and limitations. Environmental Research, 2023, 231(3), 1–18, doi: 10.1016/j.envres.2023.116316. DOI:

NABI, G., QURAT-UL-AAIN; KHALID, N.R., TAHIR, M.B., RAFIQUE, M., RIZWAN, M., HUSSAIN, S., IQBAL, T., MAJID, A. A review on novel eco-friendly green approach to synthesis TiO2 nanoparticles using different extracts. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 1552–1564, doi: 10.1007/s10904-018-0812-0. DOI:

ILYAS, M., WARIS, A., KHAN, A.U., ZAMEL, D., YAR, L., BASET, A., MUHAYMIN, A., KHAN, S., ALI, A., AHMAD, A. Biological synthesis of titanium dioxide nanoparticles from plants and microorganisms and their potential biomedical applications. Inorganic Chemistry Communications, 2021, 133, 1–9, doi: 10.1016/j.inoche.2021.108968. DOI:

IRSHAD, M.A., NAWAZ, R., UR REHMAN, M.Z., ADREES, M., RIZWAN, M., ALI, S., AHMAD, S., TASLEEM, S. Synthesis, characterization and advanced sustainable applications of titanium dioxide nanoparticles: a review. Ecotoxicology and Environmental Safety, 2021, 212, 1–14, doi: 10.1016/j.ecoenv.2021.111978. DOI:

GONÇALVES, R.A., TOLEDO, R.P., JOSHI, N., BERENGUE, O.M. Green synthesis and applications of ZnO and TiO2 nanostructures. Molecules, 2021, 26(8), 1–39, doi: 10.3390/molecules26082236. DOI:

SAGADEVAN, S., IMTEYAZ, S., MURUGAN, B., LETT, J.A., SRIDEWI, N., WELDEGEBRIEAL, G.K., FATIMAH, I., OH, W.-C. A comprehensive review on green synthesis of titanium dioxide nanoparticles and their diverse biomedical applications. Green Processing and Synthesis, 2022, 11, 44–63, doi: 10.1515/gps-2022-0005. DOI:

SHIVA SAMHITHA, S., RAGHAVENDRA, G., QUEZADA, C., HIMA BINDU, P. Green synthesized TiO2 nanoparticles for anticancer applications: mini review. Materials Today: Proceedings, 2022, 54(3), 765–770, doi: 10.1016/j.matpr.2021.11.073. DOI:

SINGH JASSAL, P., KAUR, D., PRASAD, R., SINGH, J. Green synthesis of titanium dioxide nanoparticles: development and applications. Journal of Agriculture and Food Research, 2022, 10, 1–14, doi: 10.1016/j.jafr.2022.100361. DOI:

VERMA, V., AL-DOSSARI, M., SINGH, J., RAWAT, M., KORDY, M.G.M., SHABAN, M. A review on green synthesis of TiO2 NPs: synthesis and applications in photocatalysis and antimicrobial. Polymers (Basel), 2022, 14(7), 1–19, doi: 10.3390/polym14071444. DOI:

DOSOKY, N.S., SETZER, W.N. Chemical composition and biological activities of essential oils of curcuma species. Nutrients, 2018, 10(9), 1–42, doi: 10.3390/nu10091196. DOI:

STATI, G., SANCILIO, S., BASILE, M., ANGELINI, A., DI PIETRO, R. Curcuma longa aqueous extract: a potential solution for the prevention of corneal scarring as a result of pterygium surgical excision (review). International Journal of Molecular Medicine, 2020, 46(6), 1951–1957, doi: 10.3892/ijmm.2020.4738. DOI:

FULORIA, S., MEHTA, J., CHANDEL, A., SEKAR, M., RANI, N.N.I.M., BEGUM, M.Y., SUBRAMANIYAN, V., CHIDAMBARAM, K., THANGAVELU, L., NORDIN, R., WU, Y.S., SATHASIVAM, K.V., LUM, P.T., MEENAKSHI, D.U., KUMARASAMY, V., AZAD, A.K., FULORIA, N.K. A comprehensive review on the therapeutic potential of Curcuma longa Linn. in relation to its major active constituent curcumin. Frontiers in Pharmacology, 2022, 13, 1–27, doi: 10.3389/fphar.2022.820806. DOI:

SELVAM, R.M., ATHINARAYANAN, G., NANTHINI, A.U.R., SINGH, A.J.A.R., KALIRAJAN, K., SELVAKUMAR, P.M. Extraction of natural dyes from Curcuma longa, Trigonella foenum graecum and Nerium oleander, plants and their application in antimicrobial fabric. Industrial Crops and Products, 2015, 70, 84–90, doi: 10.1016/j.indcrop.2015.03.008. DOI:

JOSE, S., GURUMALLESH PRABU, H., AMMAYAPPAN, L. Eco-friendly dyeing of silk and cotton textiles using combination of three natural colorants. Journal of Natural Fibers, 2017, 14(1), 40–49, doi: 10.1080/15440478.2015.1137530. DOI:

PERKIČ, N., GORJANC, M. Vpliv poobdelav na obarvljivost surovega in beljenega bombaža s kurkuminom in doseganje motivov s tehniko antotipije. Tekstilec, 2017, 60(1), 4–13, doi: 10.14502/Tekstilec2017.60.4-13. DOI:

GORJANC, M., MOZETIČ, M., VESEL, A., ZAPLOTNIK, R. Natural dyeing and UV protection of plasma treated cotton. The European Physical Journal D, 2018, 72, 1–6, doi: 10.1140/epjd/e2017-80680-9. DOI:

KABIR, S.M.M., HASAN, M.M., UDDIN, M.Z. Novel approach to dye polyethylene terephthalate (PET) fabric in supercritical carbon dioxide with natural curcuminoid dyes. Fibres & Textiles in Eastern Europe, 2019, 27, 65–70, doi: 10.5604/01.3001.0013.0744. DOI:

TOPRAK-CAVDUR, T., UYSAL, S., GISBERT-PAYA, J. Dyeing recycled cotton fibers using Curcuma longa and Pterocarpus santalinus natural dyes and bio-mordant chitosan. Journal of Natural Fibers, 2022, 19(16), 13736–13752, doi: 10.1080/15440478.2022.2105469. DOI:

BUDDEE, S., WONGNAWA, S., SRIPRANG, P., SRIWONG, C. Curcumin-sensitized TiO2 for enhanced photodegradation of dyes under visible light. Journal of Nanoparticle Research, 2014, 16, 1–21, doi: 10.1007/s11051-014-2336-z. DOI:

ABDUL JALILL, R.D., NUAMAN, R.S., ABD, A.N. Biological synthesis of titanium dioxide nanoparticles by Curcuma longa plant extract and study its biological properties. World Scientific News, 2016, 49(2), 204–222.

LIM, J., BOKARE, A.D., CHOI, W. Visible light sensitization of TiO2 nanoparticles by a dietary pigment, curcumin, for environmental photochemical transformations. RSC Advances, 2017, 7, 32488–32495, doi: 10.1039/c7ra05276f. DOI:

RUHANE, T.A., ISLAM, M.T., RAHAMAN, M.S., BHUIYAN, M.M.H., ISLAM, J.M.M., NEWAZ, M.K., KHAN, K.A., KHAN, M.A. Photo current enhancement of natural dye sensitized solar cell by optimizing dye extraction and its loading period. Optik, 2017, 149, 174–183, doi: 10.1016/j.ijleo.2017.09.024. DOI:

DIL, M.A., HAGHIGHATZADEH, A., MAZINANI, B. Photosensitization effect on visible-light-induced photocatalytic performance of TiO2/chlorophyll and flavonoid nanostructures: kinetic and isotherm studies. Bulletin of Materials Science, 2019, 42, 1–16, doi: 10.1007/s12034-019-1927-9. DOI:

KABIR, F., BHUIYAN, M.M.H., HOSSAIN, M.R., BASHAR, H., RAHAMAN, M.S., MANIR, M.S., ULLAH, S.M., UDDIN, S.S., MOLLAH, M.Z.I., KHAN, R.A., et al. Improvement of efficiency of dye sensitized solar cells by optimizing the combination ratio of natural red and yellow dyes. Optik, 2019, 179, 252–258, doi: 10.1016/j.ijleo.2018.10.150. DOI:

ANOUA, R., LIFI, H., TOUHTOUH, S., EL JOUAD, M., HAJJAJI, A., BAKASSE, M., PŁOCIENNIK, P., ZAWADZKA, A. Optical and morphological properties of Curcuma longa dye for dye-sensitized solar cells. Environmental Science and Pollution Research, 2021, 28, 57860–57871, doi: 10.1007/s11356-021-14551-9. DOI:

VENKATAS, J., DANIELS, A., SINGH, M. The Potential of curcumin-capped nanoparticle synthesis in cancer therapy: a green synthesis approach. Nanomaterials, 2022, 12(18), 1–23, doi: 10.3390/nano12183201. DOI:

BERGER-SCHUNN, A. Practical color measurement. New York : John Wiley Sons, 1994, p. 39.

SIST EN 13758-1:2002. Textiles - Solar UV protective properties - Part 1: Method of test for apparel fabrics. 12 p.

SIRIRERKRATANA, K., KEMACHEEVAKUL, P., CHUANGCHOTE, S. Color removal from wastewater by photocatalytic process using titanium dioxide-coated glass, ceramic tile, and stainless steel sheets. Journal of Cleaner Production, 2019, 215, 123–130, doi: 10.1016/j.jclepro.2019.01.037. DOI:

ZHAO, H., KWAK, J.H., CONRAD ZHANG, Z., BROWN, H.M., AREY, B.W., HOLLADAY, J.E. Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohydrate Polymers, 2007, 68(2), 235–241, doi: 10.1016/j.carbpol.2006.12.013. DOI:

ARBUJ, S.S., HAWALDAR, R.R., MULIK, U.P., WANI, B.N., AMALNERKAR, D.P., WAGHMODE, S.B. Preparation, characterization and photocatalytic activity of TiO2 towards methylene blue degradation. Materials Science and Engineering: B, 2010, 168(1–3), 90–94, doi: 10.1016/j.mseb.2009.11.010. DOI:

KIM, M.G., KANG, J.M., LEE, J.E., KIM, K.S., KIM, K.H., CHO, M., LEE, S.G. Effects of calcination temperature on the phase composition, photocatalytic degradation, and virucidal activities of TiO2 nanoparticles. ACS Omega, 2021, 6(16), 10668–10678, doi: 10.1021/acsomega.1c00043. DOI:

RASHID, M.M., ZORC, M., SIMONČIČ, B., JERMAN, I., TOMŠIČ, B. In-situ functionalization of cotton fabric by TiO2: the influence of application routes. Catalysts, 2022, 12(11), 1–17, doi: 10.3390/catal12111330. DOI:

SOCRATES, G. Infrared and raman characteristic group frequencies: tables and charts. 3rd edition. New York : John Wiley & Sons, 2004.

ROHAETI, E., RAFI, M., SYAFITRI, U.D., HERYANTO, R. Fourier transform infrared spectroscopy combined with chemometrics for discrimination of Curcuma longa, Curcuma xanthorrhiza and Zingiber cassumunar. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 2015, 137, 1244–1249, doi: 10.1016/j.saa.2014.08.139. DOI:

BÖTTCHER, H., MAHLTIG, B., SARSOUR, J., STEGMAIER, T. Qualitative investigations of the photocatalytic dye destruction by TiO2-coated polyester fabrics. Journal of Sol-Gel Science and Technology, 2010, 55, 177–185, doi: 10.1007/s10971-010-2230-9. DOI:

ZHOU, Y., TANG, R.C. Influence of fixing treatment on the color fastness and bioactivities of silk fabric dyed with curcumin. The Journal of The Textile Institute, 2017, 108(6), 1050–1056, doi: 10.1080/00405000.2016.1219447. DOI:






Scientific article


How to Cite

Tomšič, B., Savnik, N., Shapkova, E., Cimperman, L., Šoba, L., Gorjanc, M., & Simončič, B. (2023). Green In-situ Synthesis of TiO₂ in Combination with Curcuma Longa for the Tailoring of Multifunctional Cotton Fabric. Tekstilec, 66, 321-338.

Similar Articles

1-10 of 28

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)