Review of Heat and Moisture Transfer Models of Fire-Protective Clothing
DOI:
https://doi.org/10.14502/tekstilec.67.2024056Keywords:
fire-protective clothing, model, heat, moisture, single layer, multilayerAbstract
This paper presents a comprehensive review of previously published research on heat and moisture transfer models applied to fire-protective clothing, which is crucial for ensuring firefighter safety and comfort. By analysing experimental data and numerical simulations from various studies, this review paper tries to explore the intricate interactions between heat, moisture and textile materials. It provides insight into the performance and design optimisation of such clothing, elucidating the dynamic behaviour of heat and moisture transfer within fabric layers. The research results offer valuable guidelines for enhancing protective efficacy while maintaining wearer comfort. This review advances our understanding of fire-protective clothing and lays the groundwork for future innovations in firefighting gear design and material selection.
Downloads
References
1. GUIDOTTI, Tee L., CLOUGH, Veronica M. Occupational health concerns of firefighting. Annual Review of Public Health, 1992, 13(1), 151–171, doi: 10.1146/annurev.pu.13.050192.001055.
2. CHAKRABORTY, Supriyo, KOTHARI V.K. Prediction of radiative protective performance of multilayered clothing. Indian Journal of Fibre and Textile Research, 2016, 41(3), 284–292.
3. SONG, Guowen, LU, Yehu. Flame resistant textiles for structural and proximity fire fighting. In Handbook of Fire Resistant Textiles. Edited by F. Selcen Kilinc. Woodhead Publishing, 2013, 520–548, doi: 10.1533/9780857098931.4.520.
4. SHAKERIASKI, Farshad, GHODRAT, Maryam, NELSON, David James. Experimental and numerical studies on efficiency characterization of firefighters’ protective clothing: a review. Journal of the Textile Institute, 2021, 113(11), 2549–2568, doi: 10.1080/00405000.2021.1994739.
5. BARR, David, GREGSON, Warren, REILLY, Thomas. The thermal ergonomics of firefighting reviewed. Applied Ergonomics, 2010, 41(1), 161–172, doi: 10.1016/j.apergo.2009.07.001.
6. KAMALHA, Edwin, ZENG, Yongchun, MWASIAGI, Josphat, I., KYATUHEIRE, Salome. The comfort dimension; a review of perception in clothing. Journal of Sensory Studies, 2013, 28(6), 423–444, doi: 10.1111/joss.12070.
7. NAYAK, Rajkishore, HOUSHYAR, Shadi, PADHYE, Rajiv. Recent trends and future scope in the protection and comfort of fire-fighters’ personal protective clothing. Fire Science Reviews, 2014, 3(1), 1–19, doi: 10.1186/s40038-014-0004-0.
8. UDAYRAJ, TALUKDAR, Prabal, DAS, Apurba, ALAGIRUSAMY, Ramasamy. Heat and mass transfer through thermal protective clothing - a review. International Journal of Thermal Sciences, 2016, 106, 32–56, doi: 10.1016/j.ijthermalsci.2016.03.006.
9. HOSSAIN, M. M., DATTA, E., RAHMAN, S. A review on different factors of woven fabrics’ strength prediction. Science Research, 2016, 4(3), 88–97, doi: 10.11648/j.sr.20160403.13.
10. NAEEM, J., MAZARI, A.A., HAVELKA, A. Review: radiation heat transfer through fire fighter protective clothing. Fibres and Textiles in Eastern Europe, 2017, 25(4), 65–74, doi: 10.5604/01.3001.0010.2665.
11. RATHOUR, Rochak, DAS, Apurba, ALAGIRUSAMY, Ramasamy. Study on the influence of constructional parameters on performance of outer layer of thermal protective clothing, Journal of the Textile Institute, 2023, 114(9), 1336–1346, doi: 10.1080/00405000.2022.2124650.
12. RATHOUR, Rochak, RAJPUT, Bhavna, DAS, Apurba, ALAGIRUSAMY, Ramasamy. Performance analysis of shell fabric of fire protective clothing for different process parameters. The Journal of The Textile Institute, 2023, 114(11), 1692–1691, doi: 10.1080/00405000.2022.2145441.
13. CHAKRABORTY, Supriyo, KOTHARI, V. Effect of moisture and water on thermal protective performance of multilayered fabric assemblies for firefighters. Indian Journal of Fibre & Textile Research (IJFTR), 2017, 42(1), 94–99.
14. HOLMES, D.A., HORROCKS, A.R. Technical textiles for survival. In Handbook of Technical Textiles. Edited by A. Richard Horrocks and Subhash C. Anand. Elsevier, 2016, 287–323, 287–323, doi: 10.1016/b978-1-78242-465-9.00010-0.
15. ROSSI, R. Clothing for protection against heat and flames. In Protective Clothing. Edited by Faming Wang and Chuansi Gao. Elsevier, 2014, 70–89, doi: 10.1533/9781782420408.1.70.
16. SHALEV, Itzhak, BARKER, Roger L. Analysis of heat transfer characteristits of fabrics in an open flame exposure. Textile Research Journal, 1983, 53(8), 475–482, doi: 10.1177/004051758305300806.
17. MOREL, Aude, BEDEK, Gauthier, SALAÜN, Fabien, DUPONT, Daniel. A review of heat transfer phenomena and the impact of moisture on firefighters’ clothing and protection. Ergonomics, 2014, 57(7), 1078–1089, doi: 10.1080/00140139.2014.907447.
18. ONOFREI, Elena, PETRUSIC, Stojanka, BEDEK, Gauthier, DUPONT, Daniel, SOULAT, Damien, CODAU, Teodor Cezar. Study of heat transfer through multilayer protective clothing at low-level thermal radiation. Journal of Industrial Textiles, 2015, 45(2), 222–238, doi: 10.1177/1528083714529805.
19. MÄKINEN, H. Firefighters’ protective clothing. In Advances in Fire Retardant Materials. Edited by A.R. Horrocks and D. Price. Elsevier, 2008, 467–491, doi: 10.1533/9781845694701.3.467.
20. TORVI, David A., DALE, Douglas J. Heat transfer in thin fibrous materials under high heat flux. Fire Technology, 1999, 35(3), 210–231, doi: 10.1023/A:1015484426361.
21. MELL, William E., LAWSON J. Randall. A heat transfer model for firefighters’ protective clothing. Fire Technology, 2000, 36(1), 39–68, doi: 10.1023/A:1015429820426.
22. ISMAIL, M. I., A. S.A. AMMAR a M. EL-OKEILY. Heat transfer through textile fabrics: mathematical model. Mathematical and Computer Modelling, 1989, 12(9), 1187, doi:10.1016/0895-7177(89)90268-9.
23. SONG, Guowen, DING, Dan, CHITRPHIROMSRI, Patirop. Numerical simulations of heat and moisture transport in thermal protective clothing under flash fire conditions. International Journal of Occupational Safety and Ergonomics, 2008, 14(1), 89–106, doi: 10.1080/10803548.2008.11076752.
24. PHELPS, Hannah, SIDHU, Harvinder. A mathematical model for heat transfer in fire fighting suits containing phase change materials. Fire Safety Journal, 2015, 74, 43–47, doi: 10.1016/j.firesaf.2015.04.007.
25. SU, Yun, HE, Jiazhen, LI, Jun. An improved model to analyze radiative heat transfer in flame-resistant fabrics exposed to low-level radiation. Textile Research Journal, 2017, 87(16), 1953–1967, doi: 10.1177/0040517516660892.
26. GHAZY, Ahmed. The thermal protective performance of firefighters’ clothing: the air gap between the clothing and the body. Heat Transfer Engineering, 2017, 38(10), 975–986, doi: 10.1080/01457632.2016.1212583.
27. TORVI, D.A.,DALE J.D. A finite element model of skin subjected to a flash fire. Journal of Biomechanical Engineering, 1994, 116(3), 250–255, doi: 10.1115/1.2895727.
28. SONG, Guowen, BARKER, Roger L., HAMOUDA, Hechmi, KUZNETSOV, Andrey V., CHITRPHIROMSRI, Patirop, GRIMES, Robert V. Modeling the thermal protective performance of heat resistant garments in flash fire exposures. Textile Research Journal, 2004, 74(12), 1033–1040, doi: 10.1177/004051750407401201.
29. GHAZY, Ahmed, BERGSTROM, Donald J. Influence of the air gap between protective clothing and skin on clothing performance during flash fire exposure. Heat and Mass Transfer/Waerme- und Stoffuebertragung, 2011, 47(10), 1275–1288, doi: 10.1007/s00231-011-0791-y.
30. GHAZY, Ahmed, BERGSTROM, Donald J. Numerical simulation of heat transfer in firefighters’ protective clothing with multiple air gaps during flash fire exposure. Numerical Heat Transfer, Part A: Applications, 2012, 61(8), 569–593, doi: 10.1080/10407782.2012.666932.
31. ROSSI, Renxé M., BOLLI, Walter, STÄMPFLI, Rolf. Performance of firefighters’ protective clothing after heat exposure. International Journal of Occupational Safety and Ergonomics, 2008, 14(1), 55–60, doi: 10.1080/10803548.2008.11076747.
32. ZHU, Fang-Long, ZHANG, Wei-Yuan. Modeling heat transfer for heat-resistant fabrics considering pyrolysis effect under an external heat flux. Journal of Fire Sciences, 2009, 27(1), 81–96, doi: 10.1177/0734904108094960.
33. SU, Yun, LI, Jun, WANG, Yunyi. Effect of air gap thickness on thermal protection of firefighter’s protective clothing against hot steam and thermal radiation. Fibres and Polymers, 2017, 18(3), 582–589, doi: 10.1007/s12221-017-6714-x.
34. KOTHARI, V. K., CHAKRABORTY, Supriyo. Thermal protective performance of clothing exposed to radiant heat. Journal of the Textile Institute, 2015, 106(12), 1388–1393, doi: 10.1080/00405000.2014.995929.
35. SU, Yun, HE, Jiazhen, LI, Jun. A model of heat transfer in firefighting protective clothing during compression after radiant heat exposure. Journal of Industrial Textiles, 2018, 47(8), 2128–2152, doi: 10.1177/1528083716644289.
36. UDAYRAJ, WANG Faming. A three-dimensional conjugate heat transfer model for thermal protective clothing. International Journal of Thermal Sciences, 2018, 130, 28–46, doi: 10.1016/j.ijthermalsci.2018.04.005.
37. HE, Hualing, YU, Zhicai, ZHANG, Chunbo, LI, Minhua. Thermal protective performance of firefighters’ clothing under low-intensity radiation heat exposure. Autex Research Journal, 2021, 21(3), 234–241, doi: 10.2478/aut-2020-0018.
38. SUN, G., YOO, H.S., ZHANG, X.S., PAN, N. Radiant protective and transport properties of fabrics used by wildland firefighters. Textile Research Journal, 2000, 70(7), 567–573, doi: 10.1177/004051750007000702.
39. FU, Ming, WENG, Wenguo, YUAN, Hongyong. Effects of multiple air gaps on the thermal performance of firefighter protective clothing under low-level heat exposure. Textile Research Journal, 2014, 84(9), 968–978, doi: 10.1177/0040517513512403.
40. KEISER, Corinne, ROSSI, Rene M. Temperature analysis for the prediction of steam formation and transfer in multilayer thermal protective clothing at low level thermal radiation. Textile Research Journal, 2008, 78(11), 1025–1035, doi: 10.1177/0040517508090484.
41. KIM, Hae-Hyoung, YOO, Seung-Joon, PARK, Pyoung-Kyu, KIM, Young-Soo, HONG, Seung-Tae. Comparison of thermal protective performance test of firefighter’s protective clothing against convection and radiation heat sources. Fire science and engineering, 2018, 32(2), 17–23, doi: 10.7731/kifse.2017.31.2.017.
42. MANDAL, Sumit, SONG, Guowen, ACKERMAN, Mark, PASKALUK, Stephen, GHOLAMREZA, Farzan. Characterization of textile fabrics under various thermal exposures. Textile Research Journal, 2013, 83(10), 1005–1019, doi: 10.1177/0040517512461707.
43. SU, Yun, HE, Jiazhen, LI, Jun. Modeling the transmitted and stored energy in multilayer protective clothing under low-level radiant exposure. Applied Thermal Engineering, 2016, 93, 1295–1303, doi: 10.1016/j.applthermaleng.2015.10.089.
44. MANDAL, Sumit, ANNAHEIM, Simon, CAMENZIND, Martin, ROSSI, René M. Radiant heat-protective performance of fabrics used in firefighters’ clothing: a scientific study. In Next Generation Fibers for Smart Products : The Fiber Society 2017 Spring Conference, May 17–19, 2017. Aachen : Institut für Textiltechnik der RWTH Aachen, 2017, 89.
45. JIAZHEN, He, YAN, Chen, LICHUAN, Wang, JUN, Li. Quantitative assessment of the thermal stored energy in protective clothing under low-level radiant heat exposure. Textile Research Journal, 2018, 88(24), 2867–2879, doi: 10.1177/0040517517732084.
46. MANDAL, Sumit, ANNAHEIM, Simon, CAMENZIND, Martin, ROSSI, René M. Characterization and modelling of thermal protective performance of fabrics under different levels of radiant-heat exposures. Journal of Industrial Textiles, 2019, 48(7), 1184–1205, doi: 10.1177/1528083718760801.
47. LEI, Zhongxiang, QIAN, Xiaoming, ZHANG, Xianglong. Assessment of thermal protective performance of firefighter’s clothing by a sweating manikin in low-level radiation. International Journal of Clothing Science and Technology, 2019, 31(1), 145–154, doi: 10.1108/IJCST-04-2018-0061.
48. LEE, Young Moo, BARKER, Roger L. Effect of moisture on the thermal protective performance of heat-resistant fabrics. Journal of Fire Sciences, 1986, 4(5), 315–331, doi: 10.1177/073490418600400502.
49. MIN, Kyunghoon, SON, Yangsoo, KIM, Chongyoup, LEE, Yejin, HONG, Kyunghi. Heat and moisture transfer from skin to environment through fabrics: a mathematical model. International Journal of Heat and Mass Transfer, 2007, 50(25–26), 5292–5304, doi: 10.1016/j.ijheatmasstransfer.2007.06.016.
50. LAWSON, Lelia K., CROWN, Elizabeth M., ACKERMAN, Mark Y., DALE. J. Douglas. Moisture effects in heat transfer through clothing systems for wildland firefighters. International Journal of Occupational Safety and Ergonomics, 2004, 10(3), 227–238, doi: 10.1080/10803548.2004.11076610.
51. ZHU, Fanglong, ZHANG, Weiyuan, CHEN, Minzhi. Investigation of material combinations for fire-fighter’s protective clothing on radiant protective and heat-moisture transfer performance. Fibres and Textiles in Eastern Europe, 2007, 15(1), 72–75.
52. LU, Yehu, LI, Jun, LI, Xiaohui, SONG Guowen. The effect of air gaps in moist protective clothing on protection from heat and flame. Journal of Fire Sciences, 2013, 31(2), 99–111, doi: 10.1177/0734904112457342.
53. ATALAY, Ozgur, BAHADIR, Senem Kursun, KALAOGLU, Fatma. An analysis on the moisture and thermal protective performance of firefighter clothing based on different layer combinations and effect of washing on heat protection and vapour transfer performance. Advances in Materials Science and Engineering, 2015, 2015, 1–8, doi: 10.1155/2015/540394.
54. HE, Jiazhen, LI, Jun. Quantitatively assessing the effect of exposure time and cooling time of fabric assemblies representative of those used in firefighter clothing on the thermal protection. Fire and Materials, 2016, 40(6), 773–784, doi: 10.1002/fam.2341.
55. CHEN, Meng, ZHU, Fanglong, FENG, Qianqian, LI, Kejing, LIU, Rangtong. Experimental study on moisture transfer through firefighters’ protective fabrics in radiant heat exposures. Thermal Science, 2017, 21(4), 1665–1671, doi: 10.2298/TSCI160512051C.
56. SU, Yun, YANG, Jie, LI, Rui, SONG, Guowen, LI, Jun. Experimental study of moisture role and heat transfer in thermal insulation fabric against hot surface contact. International Journal of Thermal Sciences, 2020, 156(1882), 1–7, doi: 10.1016/j.ijthermalsci.2020.106501.
57. DAY, M. Thermal radiative protection of fire fighters’ protective clothing. Fire Technology, 1987, 23(1), 49–59, doi: 10.1007/BF01038365.
58. YOO, H.S., HU, Y.S., KIM, E.A. Effects of heat and moisture transport in fabrics and garments determined with a vertical plate sweating skin model. Textile Research Journal, 2000, 70(6), 542–549, doi: 10.1177/004051750007000612.
59. PRASAD, K., TWILLEY, W.H., LAWSON, J.R. Thermal Performance of Fire Fighters’ Protective Clothing: Numerical Study of Transient Heat and Water Vapor Transfer. Gaithersburg : US Department of Commerce, Technology Administration, National Institute of Standards and Technology, 2002, 1–32.
60. TORVI, David A., THRELFALL Todd G. Heat transfer model of flame resistant fabrics during cooling after exposure to fire. Fire Technology, 2006, 42(1), 27–48, doi: 10.1007/s10694-005-3733-8.
61. BARKER, R.L., GUERTH-SCHACHER, C., GRIMES, R.V., HAMOUDA, H. Effects of moisture on the thermal protective performance of firefighter protective clothing in low-level radiant heat exposures. Textile Research Journal, 2006, 76(1), 27–31, doi: 10.1177/0040517506053947.
62. ZHU, Fang Long, ZHANG, Wei Yuan. Modeling heat transfer for heat-resistant fabrics considering pyrolysis effect under an external heat flux. Journal of Fire Sciences, 2009, 27(1), 81–96, doi: 10.1177/0734904108094960.
63. SAWCYN, Chris M.J., TORVI, David A. Improving heat transfer models of air gaps in bench top tests of thermal protective fabrics. Textile Research Journal, 2009, 79(7), 632–644, doi: 10.1177/0040517508093415.
64. TALUKDAR, Prabal, TORVI, David A., SIMONSON, Carey J., SAWCYN, Chris M.J. Coupled CFD and radiation simulation of air gaps in bench top protective fabric tests. International Journal of Heat and Mass Transfer, 2010, 53(1–3), 526–539, doi: 10.1016/j.ijheatmasstransfer.2009.04.041.
65. SONG, Guowen, CAO, Wei, GHOLAMREZA, Farzan. Analyzing stored thermal energy and thermal protective performance of clothing. Textile Research Journal, 2011, 81(11), 1124–1138, doi: 10.1177/0040517511398943.
66. DAS, Apurba, ALAGIRUSAMY, Ramasamy, KUMAR, Pavan. Study of heat transfer through multilayer clothing assemblies: a theoretical prediction. Autex Research Journal, 2011, 11(2), 54–60, doi: 10.1515/aut-2011-110205.
67. MANDAL, S., SONG, G. An empirical analysis of thermal protective performance of fabrics used in protective clothing. The Annals of Occupational Hygiene, 2014, 58(8), 1065–1077, doi: 10.1093/annhyg/meu052.
68. FU, M., YUAN, M.Q., WENG, W.G. Modeling of heat and moisture transfer within firefighter protective clothing with the moisture absorption of thermal radiation. International Journal of Thermal Sciences, 2015, 96, 201–210, doi: 10.1016/j.ijthermalsci.2015.05.008.
69. KAKVAN, Ali, SHAIKHZADEH NAJAR, Saeed, PSIKUTA Agnes. Study on effect of blend ratio on thermal comfort properties of cotton/nylon-blended fabrics with high-performance Kermel fibre. Journal of the Textile Institute, 2015, 106(6), 674–682, doi: 10.1080/00405000.2014.934045.
70. KUTLU, Bengi, CIRELI, Aysun. Thermal analysis and performance properties of thermal protective clothing. Fibres and Textiles in Eastern Europe, 2005, 13(3), 58–62.
71. LI, Linfeng, XU, Weilin, WU, Xi, LIU, Xin, LI, Wenbin. Fabrication and characterization of infrared-insulating cotton fabrics by ALD. Cellulose, 2017, 24(9), 3981–3990, doi: 10.1007/s10570-017-1380-0.
72. ZHANG, Hui, SONG, Guowen, REN, Haitao, CAO, Juan. The effects of moisture on the thermal protective performance of firefighter protective clothing under medium intensity radiant exposure. Textile Research Journal, 2018, 88(8), 847–862, doi: 10.1177/0040517517690620.
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2024 Dr. Rochak Rathour, Azharul Islam, Apurba Das, Prof. R. Alagirusamy (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.