Stiffness Determination of Bi- and Triaxial Flat Braided Carbon/Vinyl Ester Composites Using Micromechanics Method

Authors

  • Mehmet Karahan Vocational School of Technical Sciences, Bursa Uludag University, 16059, Bursa, Turkey; Butekom Inc., Demirtas Dumlupinar OSB District, 2nd Cigdem Street No: 1/4, 16245, Osmangazi, Bursa, Turkey Author https://orcid.org/0000-0003-3915-5598
  • Nevin Karahan Vocational School of Technical Sciences, Bursa Uludag University, 16059, Bursa, Turkey Author https://orcid.org/0000-0001-6158-2997

DOI:

https://doi.org/10.14502/tekstilec.67.2024088

Keywords:

carbon braided composites, modelling methodology, micromechanics

Abstract

This paper is concerned with geometric modelling and elastic properties of 2D biaxial and triaxial braided composites. A representative unit cell (RUC) of braid architectures is first identified along with its constituents. Geometric parameters of braided structures are compared with each other. A method of inclusions with the Mori-Tanaka homogenisation was used in the determination of elastic properties of the unit cell with the Tex-Comp software. As a result, a higher amount of crimp occurs in triaxial braided structures compared to biaxial structures generated using the same yarn and construction. Therefore, the elastic modulus of the triaxial structure diminishes compared to that of the biaxial structure. However, the axial yarn reinforcement in triaxial structures ensures four times higher axial strength in the axial direction related to the biaxial structures that it provides. The results were experimentally verified.

Downloads

Download data is not yet available.

References

1. Making composites better with braid [online]. A&P Technology [accessed 23. 11. 2024]. Available on World Wide Web: <https://braider.com/?s=Making+composites+better+with+braid+>.

2. POTLURİ, P., NAWAZ, S. Developments in braided fabrics. In Specialist Yarn and Fabric Structures: Developments and Applications. Edited by R.H. Gong. Oxford : Woodhead Publishing, 2011, 333–353, doi: 10.1533/9780857093936.333.

3. BİRKEFELD, K., PİCKETT, A., MİDDENDORF, P. Virtual design and optimisation of braided structures considering production aspects of the preform. In Comprehensive Composite Materials II. Editors-in-Chief Peter W.R. Beaumont and Carl H. Zweben. Elsevier, 2018, 85–97, doi: 10.1016/B978-0-12-803581-8.10054-2.

4. AROLD, B., GESSLER, A., METZNER, C., BİRKEFELD, K. Braiding processes for composites manufacture. In Advances in Composites Manufacturing and Process Design. Edited by Philippe Boisse. Woodhead Publishing, 2015, 3–26, doi: 10.1016/B978-1-78242-307-2.00001-4.

5. FANGUEİRO, R., SOUTİNHO, F. Textile structures. In Fibrous and Composite Materials for Civil Engineering Applications. Edited by R. Fangueiro. Woodhead Publishing, 2011, 62–91, doi: 10.1533/9780857095583.1.62.

6. AYRANCI, C., CAREY, J. 2D Braided composites: a review for stiffness critical applications. Composite Structures, 2008, 85(1), 43–58, doi: 10.1016/j.compstruct.2007.10.004.

7. ISHIKAWA, T., CHOU, T.-W. Stiffness and strength behavior of woven fabric composites. Journal of Material Science, 1982, 71(11), 3211–3220, doi: 10.1007/BF01203485.

8. ISHIKAWA, T., CHOU, T.-W. In-plane thermal expansion and thermal bending coefficients of fabric composites. Journal of Material Science, 1983, 17(2), 92–104, doi: 10.1177/0021998383017002.

9. VANDEURZEN, P., Structure-performance modelling of two-dimensional woven fabric composite: PhD Thesis. Leuven : Department of MTM, KU Leuven, 1999.

10. VANDEURZEN, P., IVENS, J., VERPOEST, I. Micro-stress analysis of woven fabric composites by multilevel decomposition. Journal of Composite Materials, 1998, 32(7), 623–651, doi: 10.1177/002199839803200702.

11. GOMMERS, B., VERPOEST, I., VAN HOUTTE, P. The Mori–Tanaka method applied to textile composite materials. Acta Materialia, 1998, 46(6), 2223–2235, doi: 10.1016/S1359-6454(97)00296-6.

12. LOMOV, S.V., TRUEVTZEV NN. A software package for the prediction of woven fabrics geometrical and mechanical properties. Fibres & Textile in Eastern Europe, 1995, 3(2), 49–52.

13. GUSAKOV, A.V., LOMOV, S.V. Parametric studies of the internal structure of 3D-woven fabrics. Fibres & Textile in Eastern Europe, 1998, 6(2), 60–63.

14. HUYSMANS, G., VERPOEST, I., VAN HOUTTE, P. A poly-inclusion approach for the elastic modelling of knitted fabric composites. Acta Materialia, 1998, 46(9), 3003–3013, doi: 10.1016/S1359-6454(98)00021-4.

15. HUYSMANS, G., VERPOEST, I., VAN HOUTTE, P. A damage model for knitted fabric composites. Composites Part A: Applied Science and Manufacturing, 2001, 32(10), 1465–1475, doi: 10.1016/S1359-835X(01)00045-8.

16. LOMOV, S.V., HUYSMANS, G., LUO, Y., PARNAS, R.S., PRODROMOU, A., VERPOEST, I., PHELAN, F.R. Textile composites models: modelling strategies. Composites Part A: Applied Science and Manufacturing, 2001, 32(10), 1379–1394, doi: 10.1016/S1359-835X(01)00038-0.

17. LOMOV, S.V., GUSAKOV, A.V., HUYSMANS, G., PRODROMOU, A., VERPOEST, I. Textile geometry preprocessor for meso-mechanical models of woven composites. Composites Science and Technology, 2000, 60(11), 2083–2095, doi: 10.1016/S0266-3538(00)00121-4.

18. LOMOV, S.V., HUYSMANS, G., VERPOEST, I. Hierarchy of textile structures and architecture of fabric geometric models. Textile Research Journal, 2001, 71(6), 534–543, doi: 10.1177/004051750107100611.

19. LOMOV, S.V., TRUONG, VERPOEST, I., PEETERS, T., ROOSE, V., BOISSE, P., GASSER, A. Mathematical modelling of internal geometry and deformability of woven preforms. International Journal of Form and Processing, 2003, 6(3–4), 413–442, doi: 10.3166/ijfp.6.413-442.

20. LOMOV, S.V., PARNAS, R.S., BANDYOPADHYAY GHOSH, S., VERPOEST, I., NAKAI, A. Experimental and theoretical characterization of the geometry of two-dimensional braided fabrics. Textile Research Journal, 2002, 72(8), 706–712, doi: 10.1177/004051750207200810.

21. MOESEN, M., LOMOV, S.V., VERPOEST, I. Modelling of the geometry of weft-knit fabrics. In Proceedings of the TechTextil 2003 Symposium: 10th International Symposium for Technical Textiles [CD edition], 2003.

22. LOMOV, S.V., BELOV, E.B., BISCHOFF, T., GHOSH, S.B., TRUONG CHI, T., VERPOEST, I. Carbon composites based on multiaxial multiply stitched preforms. Part 1: geometry of the preform. Composites Part A: Applied Science and Manufacturing, 2002, 33(9), 1171–1183, doi: 10.1016/S1359-835X(02)00090-8.

23. LOMOV, S.V., VERPOEST, I., PEETERS, T., ROOSE, D., ZAKO, M. Nesting in textile laminates: geometrical modelling of the laminate. Composite Science and Technology, 2002, 63(7), 993–1007, doi: 10.1016/S0266-3538(02)00318-4.

24. BELOV, E.B., LOMOV, S.V., VERPOEST, I., PEETERS, T., ROOSE, D., PARNAS, R.S. Modelling of permeability of textile reinforcements: lattice Boltzmann method. Composite Science and Technology, 2004, 64(7–8), 1069–1080, doi: 10.1016/j.compscitech.2003.09.015.

25. VAN den BROUCKE, B., TUMER, F., LOMOV, S.V., VERPOEST, I., De LUCA, P., DUFORT, L. Micro–macro structural analysis of textile composite parts: case study. In Proceedings of the 25th international SAMPE Europe conference, Paris, March 30th – April 1st 2004, 194–199, https://www.researchgate.net/publication/228406657.

26. LOMOV, S.V., VERPOEST, I., KONDRATIEV, S.V., BOROVKOV, A.I. An integrated model strategy for processing and properties of textile composites: new results. In Proceedings of the 22nd International SAMPE Europe Conference, 2001, 379–389.

27. LOMOV, S.V., DING, X., HIROSAWA, S., KONDRATIEV, S.V., MOLIMARD, J., NAKAI, H., VAUTRIN, A., VERPOEST, I., ZAKO, M. FE simulations of textile composites on unit cell level: validation with full-field strain measurements: In Proceedings of the 26th SAMPE-Europe conference, Paris; 5th – 7th April 2005 [CD edition], 2005.

28. LOMOV, S.V., MIKOLANDA, T. Textile virtual reality. In Proceedings of TechTextil symposium, Frankfurt am Main, 2005 [CD edition], 2005.

29. BOGDANOVİCH, A.E., KARAHAN, M., LOMOV, S.V., VERPOEST, I., Quasi-static tensile behavior and damage of carbon/epoxy composite reinforced with 3D non-crimp orthogonal woven fabric. Mechanics of Materials, 2013, 62, 14–31, doi: 10.1016/j.mechmat.2013.03.005.

30. KARAHAN, M., LOMOV, S.V., BOGDANOVİCH, A.E., MUNGALOV, C., VERPOEST, I. Internal geometry evaluation of non-crimp 3D orthogonal woven carbon fabric composite. Composites Part A: Applied Science and Manufacturing, 2010, 41(9), 1301–1311, doi: 10.1016/j.compositesa.2010.05.014.

31. KARAHAN, M., KARAHAN, N. Influence of weaving structure and hybridization on the tensile properties of woven carbon-epoxy composites. Journal of Reinforced Plastics and Composites, 2014, 33(2), 212–222, doi: 10.1177/0731684413504019.

32. KARAHAN, M. The effect of fibre volume fraction on damage initiation and propagation of woven carbon-epoxy multi-layer composites. Textile Research Journal, 2012, 82(1), 45–61, doi: 10.1177/0040517511416282.

33. KARAHAN, M. Investigation of damage initiation and propagation in 2 × 2 twill woven carbon/epoxy multi-layer composites. Textile Research Journal, 2011, 81(4), 412–428, doi: 10.1177/0040517510395996.

34. LOMOV, S.V., BOGDANOVİCH, A.E., IVANOV, D.S., HAMADA, K., KURASHİKİ, T., ZAKO, M., KARAHAN, M., VERPOEST, I. Finite element modelling of progressive damage in non-crimp 3D orthogonal weave and plain weave E-Glass composites. In Second World Conference on 3D Fabrics and Their Applications, 2009, Greenville, South Carolina, USA.

Downloads

Published

2024-12-18

Issue

Section

Scientific article

Categories

How to Cite

Karahan, M., & Karahan, N. (2024). Stiffness Determination of Bi- and Triaxial Flat Braided Carbon/Vinyl Ester Composites Using Micromechanics Method. Tekstilec, 67(4), 346-356. https://doi.org/10.14502/tekstilec.67.2024088

Most read articles by the same author(s)