Effects of Morphology, Structure and Altering Layers on the Composite Heat Resistance of Electrospun PS/PU

Authors

  • Emilija Zdraveva University of Zagreb Faculty of Textile Technology, Department of Fundamental Natural and Engineering Sciences, Prilaz b. Filipovića 28a, Zagreb, Croatia Author https://orcid.org/0000-0003-2845-8630
  • Zenun Skenderi University of Zagreb Faculty of Textile Technology, Department of Textile Design and Management, Prilaz b. Filipovića 28a, Zagreb, Croatia Author https://orcid.org/0000-0003-0758-1111
  • Ivana Salopek Čubrić University of Zagreb Faculty of Textile Technology, Department of Textile Design and Management, Prilaz b. Filipovića 28a, Zagreb, Croatia Author https://orcid.org/0000-0003-4295-5190
  • Budimir Mijovic University of Zagreb Faculty of Textile Technology, Department of Fundamental Natural and Engineering Sciences, Prilaz b. Filipovića 28a, Zagreb, Croatia Author https://orcid.org/0009-0003-8871-1703

DOI:

https://doi.org/10.14502/10.14502/tekstilec.68.2024091

Keywords:

polyurethane, polystyrene, fibre diameter, pore area, thermal resistance

Abstract

Thermal insulating materials are of paramount importance in many application areas, including building construction, electronics, aerospace engineering, the automobile industry and the clothing industry. Electrospun materials are light weight with a well-controlled fibre diameter/morphology and a highly interconnected porous structure that facilitates the trapping of air and breathability. When combined with other conventional materials, they enhance the thermal insulating property of a composite structure. This study focused on electrospun single polyurethane (PU), polystyrene (PS) and layered composites thereof, in terms of heat resistance and its dependence on fibre diameter, pore area, number, thickness (solution volume) and the position of electrospun layers. It thus contributes to the field by addressing the effects of multiple parameters effect on a composite material’s heat resistance. The fibre diameter for both electrospun polymers increased significantly by increasing the concentration, while there was a generally opposite effect from increasing electrical voltage. The 10 wt% PU and 30 wt% PS used to produce the layered composites demonstrated the highest reduction of the fibre mean diameter, from (443 ± 224) nm to (328 ± 148) nm, and from (2711 ± 307) nm to (2098 ± 290) nm, respectively. Thicker PS fibres resulted in the greatest mean pore areas of (13 ± 9) µm2, while the PU mean pore areas were in the range of (2 ± 1) µm2 to (4 ± 2) µm2. Although all single and PS/PU composites demonstrated a porosity greater than 97%, their configuration in terms of number of layers, total thickness and PS and PU positioning (includes fibre diameter and pore area) affected the measured heat resistance. Single electrospun PS demonstrated a reduction in heat resistance of 0.0219 m2K/W (compared to electrospun PU) due to its thicker fibres and larger pore areas, and thus looser structure. Combining the two electrospun layers improved heat resistance up to 0.0341 m2K/W. The total heat resistance of the layered PU/PS composite was increased (up to 0.1063 m2K/W for the electrospun PS/PS/PU/PU) by increasing the number and volume of each electrospun layer solution, and by spinning the PU layer on top of the system, which resisted the heat flow due to its smaller pore areas and compact structure. These results prove that by optimizing process/structure parameters, a multi-layered material with good thermal performance can be designed to meet the requirements of a thermal insulating product.

Downloads

Download data is not yet available.

References

1. FAN, M., FU, F. Introduction: a perspective–natural fibre composites in construction. In Advanced High Strength Natural Fibre Composites in Construction. Edited by M. Fan and F. Fu. Cambridge : Elsevier, 2017, 1–20, doi: 10.1016/B978-0-08-100411-1.00001-7.

2. KORJENIC, A., PETRÁNEK, V., ZACH, J., HROUDOVÁ, J. Development and performance evaluation of natural thermal-insulation materials composed of renewable resources. Energy and Buildings, 2011, 43(9), 2518–2523, doi: 10.1016/j.enbuild.2011.06.012.

3. BOZSAKY, D. Nature-based thermal insulation materials from renewable resources. A state-of-the-art review. Slovak Journal of Civil Engineering, 2019, 27(1), 52–59, doi: 10.2478/sjce-2019-0008.

4. CETINER, I., SHEA, A.D. Wood waste as an alternative thermal insulation for buildings. Energy and Buildings, 2018, 168, 374–384, doi: 10.1016/j.enbuild.2018.03.019.

5. CAI, Z., AL FARUQUE, M.A., KIZILTAS, A., MIELEWSKI, D., NAEBE, M. Sustainable lightweight insulation materials from textile-based waste for the automobile industry. Materials, 2021, 14(5), 1–20, doi: 10.3390/ma14051241.

6. SALOPEK ČUBRIĆ, I., SKENDERI, Z. Impact of cellulose materials finishing on heat and water vapour resistance. Fibres & Textiles in Eastern Europe, 2013, 97(1), 61–66.

7. BOZSAKY, D. The historical development of thermal insulation materials. Periodica Polytechnica Architecture, 2010, 41(2), 49–56, doi: 10.3311/pp.ar.2010-2.02.

8. DHANGAR, M., CHATURVEDI, K., MILI, M., PATEL, S. S., KHAN, M. A., BHARGAW, H. N. SRIVASTAVA, A. K., VERMA, S. Emerging 3D printed thermal insulating materials for sustainable approach: A review and a way forward. Polymers for Advanced Technologies, 2023, 34(5), 1425–1434, doi: 10.1002/pat.5989.

9. GIBSON, P. W., LEE, C., KO, F., RENEKER, D. Application of nanofiber technology to nonwoven thermal insulation. Journal of Engineered Fibers and Fabrics, 2007, 2(2), 32–40, doi: 10.1177/155892500700200204.

10. GRABOWSKA, B., KASPERSKI, J. The thermal conductivity of 3D printed plastic insulation materials – the effect of optimizing the regular structure of closures. Materials, 2020, 13(19), 1–15, doi: 10.3390/ma13194400.

11. ZDRAVEVA, E., FANG, J., MIJOVIĆ, B., LIN, T. Electrospun nanofibers. In Structure and Properties of High-performance Fibers. Edited by Gajanan Bhat. Cambridge : Woodhead Publishing, 2017, 267–300, doi: 10.1016/B978-0-08-100550-7.00011-5.

12. SUKIGARA, S., GANDHI, M., AYUTSEDE, J., MICKLUS, M., KO, F. Regeneration of Bombyx mori silk by electrospinning – part 1: processing parameters and geometric properties. Polymer, 2003, 44(19), 5721–5727, doi: 10.1016/S0032-3861(03)00532-9.

13. MIT-UPPATHAM, C., NITHITANAKUL, M., SUPAPHOL., P. Ultrafine electrospun polyamide-6 fibers: effect of solution conditions on morphology and average fiber diameter. Macromolecular Chemistry and Physics, 2004, 205(17), 2327–2338, doi: 10.1002/macp.200400225.

14. BUCHKO, C.J., CHEN, L.C., SHEN, Y., MARTIN, D.C. Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer, 1999, 40(26), 7397–7407, doi: 10.1016/S0032-3861(98)00866-0.

15. YUAN, X., ZHANG, Y., DONG, C., SHENG, C. Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polymer International, 2004, 53(11), 1704–1710, doi: 10.1002/pi.1538.

16. TAN, S.-H., INAI, R., KOTAKI, M., RAMAKRISHNA, S. Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer, 2005, 46(16), 6128–6134, doi: 10.1016/j.polymer.2005.05.068.

17. LEE, D., JUNG, J., LEE, G. H., LEE, W. I. Electrospun nanofiber composites with micro-/nano-particles for thermal insulation. Advanced Composite Materials, 2019, 28(2), 193–202, doi: 10.1080/09243046.2018.1478607.

18. CHEN, W., FU, M., WENG, W. Electrospinning of continuous nanofiber hollow yarns for thermal storage and insulation by a multi-step twisting method. Textile Research Journal, 2020, 90(9–10), 1045–1056, doi: 10.1177/0040517519886023.

19. BAE, M., AHN, H., KANG, J., CHOI, G., CHOI, H. Determination of the long-term thermal performance of foam insulation materials through heat and slicing acceleration. Polymers, 2022, 14(22), 1–18, doi: 10.3390/polym14224926.

20. MERILLAS, B., VILLAFAÑE, F., RODRÍGUEZ-PÉREZ, M.Á. Improving the insulating capacity of polyurethane foams through polyurethane aerogel inclusion: from insulation to superinsulation. Nanomaterials, 2022, 12(13), 1–19, doi: 10.3390/nano12132232.

21. YOON, J.W., PARK, Y., KIM, J., PARK, C.H. Multi-jet electrospinning of polystyrene/polyamide 6 blend: thermal and mechanical properties. Fashion and Textiles, 2017, 4(9), 1–12, doi: 10.1186/s40691-017-0090-4.

22. SABANTINA, L., HES, L., MIRASOL, J.R., CORDERO, T., EHRMANN, A. Water vapor permeability through PAN nanofiber mat with varying membrane-like areas. Fibres & Textiles in Eastern Europe, 2019, 1(133), 12–15, doi: 10.5604/01.3001.0012.7502.

23. YAMAGUCHI, T., KUROKI, H., MIYATA, F. DMFC performances using a pore-filling polymer electrolyte membrane for portable usages. Electrochemistry Communications, 2005, 7(7), 730–734, doi: 10.1016/j.elecom.2005.04.030.

24. ISO 11092:1993 Textiles – physiological effects – measurement of thermal and water-vapour resistance under steady-state conditions (sweating guarded-hotplate test). Geneva : International Organization for Standardization, 1993, 1–10.

25. SALOPEK ČUBRIĆ, I., SKENDERI, Z., MIHELIĆ-BOGDANIĆ, A., ANDRASSY, M. Experimental study of thermal resistance of knitted fabrics. Experimental Thermal and Fluid Science, 2012, 38, 223–228, doi: 10.1016/j.expthermflusci.2011.12.010.

26. KIM, G.-T., HWANG, Y.-J., AHN, Y.-C., SHIN, H.-S., LEE, J.-K., SUNG, C.-M. The morphology of electrospun polystyrene fibers. Korean Journal of Chemical Engineering, 2005, 22, 147–153, doi: 10.1007/BF02701477.

27. ANJUM, S., RAHMAN, F., PANDEY, P., ARYA, D.K., ALAM, M., RAJINIKANTH, P.S., AO, Q. Electrospun biomimetic nanofibrous scaffolds: a promising prospect for bone tissue engineering and regenerative medicine. International Journal of Molecular Sciences, 2022, 23(16), 1–33, doi: 10.3390/ijms23169206.

28. LEE, S., OBENDORF, S.K. Transport properties of layered fabric systems based on electrospun nanofibers. Fibers and Polymers, 2007, 8, 501–506, doi: 10.1007/BF02875872.

29. ZDRAVEVA, E., MIJOVIĆ, B. Parameters dependence of fibers diameter and pores area in electrospinning. Advanced Engineering Forum, 2018, 26, 67–73, doi: 10.4028/www.scientific.net/AEF.26.67.

30. CAO, X., CHEN, W., ZHAO, P., YANG, Y., YU, D.-G. Electrospun porous nanofibers: pore−forming mechanisms and applications for photocatalytic degradation of organic pollutants in wastewater. Polymers, 2022, 14(19), 1–25, doi: 10.3390/polym14193990.

31. DEMIR, M.M., YILGOR, I., YILGOR, E., ERMAN, B. Electrospinning of polyurethane fibers. Polymer, 2002, 43(11), 3303–3309, doi: 10.1016/S0032-3861(02)00136-2.

32. SENCADAS, V., CORREIA, D.M., AREIAS, A., BOTELHO, G., FONSECA, A., NEVES, I., RIBELLES, J. G., MENDEZ, S. L. Determination of the parameters affecting electrospun chitosan fiber size distribution and morphology. Carbohydrate Polymers, 2012, 87(2), 1295–1301, doi: 10.1016/j.carbpol.2011.09.017.

33. RIBEIRO, C., SENCADAS, V., COSTA, C. M., RIBELLES, J.L.G., LANCEROS-MÉNDEZ, S. Tailoring the morphology and crystallinity of poly (L-lactide acid) electrospun membranes. Science and Technology of Advanced Materials, 2011, 12(1), 1–10, doi: 10.1088/1468-6996/12/1/11660947.

34. TORNELLO, P.R.C., CARACCIOLO, P.C., ROSELLÓ, J.I.I., ABRAHAM, G.A. Electrospun scaffolds with enlarged pore size: porosimetry analysis. Materials Letters, 2018, 227, 191–193, doi: 10.1016/j.matlet.2018.05.072.

35. SCHREUDER-GIBSON, H., GIBSON, P., SENECAL, K., SENNETT, M., WALKER, J., YEOMANS, W. Protective textile materials based on electrospun nanofibers. Journal of Advanced Materials, 2002, 34(3), 44–55.

36. OĞLAKCIOĞLU, N., AKDUMAN, C., SARI, B. Investigation of thermal comfort properties of electrospun thermoplastic polyurethane fiber coated knitted fabrics for wind‐resistant clothing. Polymer Engineering & Science, 2021, 61(3), 669–679, doi: 10.1002/pen.25607.

37. NASOURI, K., SHOUSHTARI, A.M., HAJI, A. The role of nanofibers diameter in the enhanced thermal conductivity of electrospun nanofibers. In Proceedings of the The 6th TEX TEH International Conference, Bucharest, Romania, 2013, 1–9.

38. ÖZKAN, E.T., KAPLANGIRAY, B.M. Investigating thermophysiological comfort properties of polyester knitted fabrics. Journal of Textile Engineering & Fashion Technology, 2019, 5(1), 50–56, doi: 10.15406/jteft.2019.05.00180.

39. LU, X., WU, S. Thermo-physiological comfort properties of different woven fabrics used in sportswear for outdoor activities. Thermal Science, 2022, 26(3B), 2707–2712, doi: 10.2298/TSCI2203707L.

40. MIJOVIĆ, B., SKENDERI, Z., SALOPEK ČUBRIĆ, I. Measurement of thermal parameters of skin-fabric environment. Periodicum Biologorum, 2010, 112(1), 69–73.

Downloads

Published

2025-03-20

Issue

Section

Scientific article

Categories

How to Cite

Zdraveva, E., Skenderi, Z. ., Salopek Čubrić, I., & Mijovic, B. (2025). Effects of Morphology, Structure and Altering Layers on the Composite Heat Resistance of Electrospun PS/PU. Tekstilec, 68(1), 14-30. https://doi.org/10.14502/10.14502/tekstilec.68.2024091

Most read articles by the same author(s)