Effect of Fibre Type and Fabric Structure on Composite Materials Under Ballistic Shock Impact
DOI:
https://doi.org/10.14502/tekstilec.67.2024090Keywords:
composites, ballistic, shock loading, aramid, UHMW PEAbstract
This study analysed the effect of fibre type and fabric structure on the behaviour of aramid and ultra-high molecular weight polyethylene (UHMW PE) composite plates under ballistic shock loading. A specific test system that simulates a ballistic shock wave was prepared in this context. Aramid composite plates are reinforced with three types of fabric structure, while UHMW PE composite plates are reinforced with a single fabric structure. The plates were cured in an autoclave. The ballistic explosion behaviour of composite plates was evaluated in terms of trauma depth, trauma diameter and absorbed energy at the ballistic limit. The results of the ballistics tests showed that GS3000-reinforced composites demonstrated the highest energy absorption. In contrast, UHMW PE composite plates exhibited higher ballistic energy absorption on a unit-weight basis than other plates. UHMW PE fabric-reinforced composites showed approximately 30% higher energy absorption per unit area density than other composites. Biaxial aramid fabric composite plates exhibited 10% higher energy absorption per unit area density than woven aramid fabric composite plates. Additionally, UD-aramid GS3000 reinforced composite demonstrated the lowest trauma depth of all tested composites, showing 90% less trauma depth than UHMW PE fabric-reinforced composites.
Downloads
References
1. KARAHAN, M., KARAHAN, E.A. Development of an ınnovative sandwich composite material for protection of lower limb against landmine explosion: mechanical leg test results. Textile Research Journal, 2016, 87(1), 15–30, doi: 10.1177/0040517515624880.
2 KAMBEROǦLU, M., KARAHAN, M., ALPDOǦAN, C., KARAHAN, N. Evaluation of foot protection effectiveness against AP mine blasts: effect of deflector geometry. Journal of Testing and Evaluation, 2024, 45(2), 356–368, doi: 10.1520/JTE20150171.
3. KARAHAN, M., KARAHAN, E.A., KARAHAN, N. Blast performance of demining footwear: numerical and experimental trials on frangible leg model and ınjury modeling. Journal of Testing and Evaluation, 2018, 46(2), 666–679, doi: 10.1520/JTE20160340.
4. KARAHAN, M., KUŞ, A., EREN, R. An Investigation into ballistic performance and energy absorption capabilities of woven aramid fabrics. International Journal of Impact Engineering, 2008, 35(6), 499–510, doi: 10.1016/J.IJIMPENG.2007.04.003.
5.. KARAHAN, M. Comparison of ballistic performance and energy absorption capabilities of woven and unidirectional aramid fabrics. Textile Research Journal, 2008, 78(8), 718–730, doi: 10.1177/0040517508090487.
6. KARAHAN, M., YILDIRIM, K. Low velocity ımpact behaviour of aramid and UHMWPE composites. Fibres & Textiles in Eastern Europe, 2015, 23(3), 97–105, doi: 10.5604/12303666.1152522.
7. KARAHAN, M., JABBAR, A., KARAHAN, N. Ballistic ımpact behavior of the aramid and ultra-high molecular weight polyethylene composites. Journal of Reinforced Plastics and Composites, 2015, 34(1), 37–48, doi: 10.1177/0731684414562223.
8. ZHOU, W., WENTE, T., LIU, D., MAO, X., ZENG, D., TORAB, H., DAHL, J., XIAO, X. A comparative study of a quasi 3D woven composite with UD and 2D woven laminates. Composites Part A: Applied Science and Manufacturing, 2020, 139, 1–11, doi: 10.1016/J.COMPOSITESA.2020.106139.
9. TAM, T., BHATNAGAR, A. High-performance ballistic fibers and tapes. In Lightweight Ballistic Composites: Military and Law-Enforcement Applications. Edited by Ashok Bhatnagar. Woodhead Publishing, 2016, 1–39, doi: 10.1016/B978-0-08-100406-7.00001-5.
10. BARHOUMI, H., BHOURI, N., FEKI, I., BAFFOUN, A., HAMDAOUI, M., BEN ABDESSALEM, S. Review of ballistic protection materials: properties and performances. Journal of Reinforced Plastics and Composites, 2022, 42(13-14), 685–699, doi: 10.1177/07316844221137920.
11 BAJYA, M., MAJUMDAR, A., BUTOLA, B.S., ARORA, S., BHATTACHARJEE, D. Ballistic performance and failure modes of woven and unidirectional fabric based soft armour panels. Composite Structures, 2021, 255, 1–11, doi: 10.1016/J.COMPSTRUCT.2020.112941.
12. ZHOU, G., SUN, Q., MENG, Z., LI, D., PENG, Y., ZENG, D., SU, X. Experimental ınvestigation on the effects of fabric architectures on mechanical and damage behaviors of carbon/epoxy woven composites. Composite Structures, 2021, 257, 1–13, doi: 10.1016/J.COMPSTRUCT.2020.113366.
13. LOPRESTO, V., LEONE, C., DE IORIO, I. Mechanical characterisation of basalt fibre reinforced plastic. Composites Part B: Engineering, 2011, 42,(4), 717–723, doi: 10.1016/J.COMPOSITESB.2011.01.030.
14. GAO, Z., CHEN, Y., WANG, Z., LI, S., WEI, W., CHEN, J. Shattering effect study of aramid–steel composite target plates under localized blast loading. Sustainability, 2023, 15(5), 1–26, doi: 10.3390/SU15054160.
15. BUTOLA, B.S., MAJUMDAR, A., JAIN, A., KAUR, G. Multilayered flexible uni-polymer and hybrid composites for ballistic applications. Fibers and Polymers, 2017, 18, 786–794, doi: 10.1007/S12221-017-6959-4.
16. JOSHI, A., MISHRA, A., SAXENA, V.K. Impact response and energy absorption mechanisms of UHMWPE fabric and composites in ballistic applications: a comprehensive review. Composites Part A: Applied Science and Manufacturing, 2024, 185, 1–27, doi: 10.1016/J.COMPOSITESA.2024.108314.
17. OKHAWILAI, M., PARNKLANG, T., MORA, P., HIZIROGLU, S., RIMDUSIT, S. The energy absorption enhancement in aramid fiber-reinforced poly (benzoxazine-co-urethane) composite armors under ballistic impacts. Journal of Reinforced Plastics and Composites, 2019, 38(3), 133–146., doi: 10.1177/0731684418808894.
18. WANG, H., HAZELL, P.J., SHANKAR, K., MOROZOV, E. V., ESCOBEDO, J.P., WANG, C. Effects of fabric folding and thickness on the ımpact behaviour of multi-ply UHMWPE woven fabrics. Journal of Materials Science, 2017, 52, 13977–13991, doi: 10.1007/S10853-017-1482-Y.
19. WANG, Z., ZHANG, H., DONG, Y., ZHOU, H., HUANG, G. Ballistic performance and protection mechanism of aramid fabric modified with polyethylene and graphene. International Journal of Mechanical Sciences, 2023, 237, 1–14, doi: 10.1016/J.IJMECSCI.2022.107772.
20. WANG, H., WEERASINGHE, D., MOHOTTI, D., HAZELL, P.J., SHIM, V.P.W., SHANKAR, K., MOROZOV, E. V. On the impact response of UHMWPE woven fabrics: experiments and simulations. International Journal of Mechanical Sciences, 2021, 204, 1–15, doi: 10.1016/J.IJMECSCI.2021.106574.
21. FREESTON, W.D., CLAUS, W.D. Strain-wave reflections during ballistic ımpact of fabric panels. Textile Research Journal, 43(6), 348–351, doi: 10.1177/004051757304300606.
22. SHAKER, K., JABBAR, A., KARAHAN, M., KARAHAN, N., NAWAB, Y. Study of dynamic compressive behaviour of aramid and ultrahigh molecular weight polyethylene composites using Split Hopkinson Pressure Bar. Journal of Composite Materials, 2017, 51(1), 81–94, doi: 10.1177/0021998316635241.
23. KARAHAN, M., KARAHAN, N. Influence of weaving structure and hybridization on the tensile properties of woven carbon-epoxy composites. Journal of Reinforced Plastics and Composites, 2014, 33(2), 212–222, doi: 10.1177/0731684413504019.
24. RICHARDS, D. Advanced Mathematical Methods with Maple. Cambridge : Cambridge University Press, 2009.
25. WEISS, V., ANDOR, L., RENNER, G., VÁRADY, T. Advanced surface fitting techniques. Computer Aided Geometric Design, 2002, 19(1), 19–42, doi: 10.1016/S0167-8396(01)00086-3.
26. GAMA, B.A., GILLESPIE, J.W. Punch shear based penetration model of ballistic ımpact of thick-section composites. Composite Structures, 2008, 86(4), 356–369, doi: 10.1016/J.COMPSTRUCT.2007.11.001.
27. ZHOU, H., MIN, S., CHEN, X. A numerical study on the ınfluence of quasi-ısotropic structures on the ballistic performance of para-aramid woven composites. Composite Structures, 2021, 275, 1–12, doi: 10.1016/J.COMPSTRUCT.2021.114489.
Downloads
Published
License
Copyright (c) 2024 Mehmet Karahan, Nasir Muhammad Ali, Malik Rizwan Ahmed (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.