Breathability and Dynamic Evaporative Cooling Heat Flow of a Ripstop Defence Fabric

Authors

  • Sofien Benltoufa Laboratory for the Study of Thermal and Energy Systems (LESTE, LR99ES31), National Engineering School of Monastir, University of Monastir, Tunisia, 05000, Monastir, Tunisia Author https://orcid.org/0000-0001-6520-0802
  • Hind Algamdy Fashion Design and Fabric Department, Turabah University College, Taif University, Taif, Saudi Arabia Author https://orcid.org/0009-0001-8710-4288

DOI:

https://doi.org/10.14502/tekstilec.68.2024115

Keywords:

ripstop, breathability, evaporative cooling heat flow, refreshing sensation

Abstract

This study investigated the breathability and dynamics of evaporative cooling heat flow through a defence fabric. Two ripstop fabrics were developed by changing the floats in the delimiting plain grid. The influence of fibre kinds was studied using weft threads made of 100% cotton, 65% polyester/35% cotton and 100% polyester. First, the breathability of used materials was evaluated using relative water vapour permeability (RWVP), resistance (Ret) and air permeability. Second, a more in-depth examination was conducted using evaporative cooling heat flow kinetics, and certain distinguishing variables that describe the various evaporative cooling heat flow phases were found. Those parameters consider the evaporative heat flow at 0 seconds, defining the skin’s first contact and the time spent to reach equilibrium. The results demonstrated that adding polyester to a fabric makes it more breathable, cooler, faster drying, and provides a more refreshing sensation on initial contact with the skin. Adding floats to the delimiting plain grid reduces the fabric's porosity and breathability.

Downloads

Download data is not yet available.

References

1. BEHERA, G.R., MUKHOPADHYAY, A., SIKKA, M. Development of scheme to evaluate the performance of parachute canopy fabrics under tensile impact. Journal of Industrial Textiles, 2022, 51(suppl. 2), 2283S–3305S, doi: 10.1177/15280837221080103.

2. BEHERA, G.R., SIKKA, M., MUKHOPADHYAY, A. Effect of fabric construction, seam angle, and impact force on the performance of the parachute canopy. The Journal of the Textile Institute, 2023, 114(8), 1257–1267, doi: 10.1080/00405000.2022.2131360.

3. AMRI SAFIAI, M.S., ARIS, A., ABD RAHMAN, N.H. Dielectric constant measurement technique on army ripstop nylon material. In 2022 IEEE International RF and Microwave Conference (RFM), Kuala Lumpur, Malaysia, 2022, 1–4, doi: 10.1109/RFM56185.2022.10064823.

4. ERYURUK, S.H., KALAOĞLU, F. The effect of weave construction on tear strength of woven fabrics. Autex Research Journal, 2015, 15(3), 207–214, doi: 10.1515/aut-2015-0004.

5. Polyester fiber market size, share & trends analysis report by form (solid, and hollow), by grade, by product type (polyester staple fiber (PSF), and polyester filament yarn (PFY)), by application, by regional outlook and forecast, 2023 - 2030 [online]. Research and Markets [accessed 31 May 2024]. Available on World Wide Web: < https://www.researchandmarkets.com/reports/5928446/polyester-fiber-market-size-share-and-trends>.

6. KABISH, A.K., DEGEFU, D.T., GEBREGIORGIS, Z.D. Cotton value chain and economics. In Cotton Sector Development in Ethiopia: Challenges and Opportunities. Edited by K. Murugesh Babu, Abera Kechi Kabish, Getnet Belay Tesema and Bizuayehu Kerisew Semahagn. Singapore : Springer, 2024, 441–463, doi: 10.1007/978-981-99-9149-5_18.

7. RUCKMAN, J.E. Water resistance and water vapour transfer. In Textiles in Sport. Edited by R. Shishoo. Woodhead Publishing, 2005, 287–305, doi: 10.1533/9781845690885.4.287.

8. REN, Y.J., RUCKMAN, J.E. Water vapour transfer in wet waterproof breathable fabrics. Journal of Industrial Textiles, 2003, 32(3), 165–175, doi: 10.1177/1528083703032003002.

9. RUCKMAN, J.E. The application of a layered system to the marketing of outdoor clothing. Journal of Fashion Marketing and Management, 2005, 9(1), 122–129, doi: 10.1108/13612020510586442.

10. ISO 11092:2014. Textiles – Physiological effects – Measurement of thermal and water-vapour resistance under steady-state conditions (sweating guarded-hotplate test). Geneva : International Organization for Standardization, 2017, 1–15.

11. MANDAL, S., ANNAHEIM, S., CAMENZIND, M., ROSSI, R.M. Evaluation of thermo-physiological comfort of clothing using manikins. In Manikins for Textile Evaluation. Edited by Rajkishore Nayak and Rajiv Padhye. Elsevier, 2017, 115–140, doi: 10.1016/B978-0-08-100909-3.00005-4.

12. GHOLAMREZA, F., SU, Y., LI, R., NADARAJA, A.V., GATHERCOLE, R., LI, R., GOLOVIN, K., ROSSI, R.M., ANNAHEIM, S., MILANI, A.S. Modeling and prediction of thermophysiological comfort properties of a single layer fabric system using single sector sweating torso. Materials, 2022, 15(16), 1–16, doi: 10.3390/MA15165786.

13. ULLAH, H.M.K., LEJEUNE, J., CAYLA, A., MONCEAUX, M., CAMPAGNE, C., DEVAUX, É. A review of noteworthy/major innovations in wearable clothing for thermal and moisture management from material to fabric structure. Textile Research Journal, 2022, 92(17-18), 3351–3386, doi: 10.1177/00405175211027799.

14. BENLTOUFA, S., BOUGHATTAS, A., FAYALA, F., ALGAMDY, H., ALFALEH, A., LUBOS, H., ALJUAID, A. Water vapour resistance modelling of basic weaving structure. The Journal of The Textile Institute, 2024, 115(12), 2456–2468, doi: 10.1080/00405000.2023.2293503.

15. ALFALEH, A., BENLTOUFA, S., FAYALA, F. Evaporation coefficient determination during the capillary rise. Textile Research Journal, 2023, 93(17–18), 4191–4196, doi: 10.1177/00405175231168425.

16. NASRIN, S., MANDAL, S., ISLAM, M.M., PETROVA, A., AGNEW, R.J., BOORADY, L.M. Factors affecting the sweat-drying performance of active sportswear - a review. Textiles, 2023, 3(3), 319–338, doi: 10.3390/TEXTILES3030022.

17. HES, L., LOGHIN, C. Heat, moisture and air transfer properties of selected woven fabrics in wet state. Journal of Fiber Bioengineering and Informatics, 2009, 2(3), 141–149, doi: 10.3993/jfbi12200901.

18. BOGUSŁAWSKA-BACZEK, M., HES, L. Effective water vapour permeability of wet wool fabric and blended fabrics. Fibres and Textiles in Eastern Europe, 2013, 21(1(97)), 67–71.

19. ZHANG, C., WANG, X., LV, Y., MA, J., HUANG, J. A new method for evaluating heat and water vapor transfer properties of porous polymeric materials. Polymer Testing, 2010, 29(5), 553–557, doi: 10.1016/j.polymertesting.2010.02.004.

20. BECKER, S., POTCHTER, O., YAAKOV, Y. Calculated and observed human thermal sensation in an extremely hot and dry climate. Energy and Buildings, 2003, 35(8), 747–756, doi: 10.1016/S0378-7788(02)00228-1.

21. KEATINGE, W.R. Principles and practice of human physiology. By O. G. Edholm and J. S. Weiner. Pp. 672. (Academic Press, 1981). Quarterly Journal of Experimental Physiology, 1981, 6(4), 543–543, doi: 10.1113/expphysiol.1981.sp002598.

22. DONG, Y., KONG, J., MU, C., ZHAO, C., THOMAS, N.L., LU, X. Materials design towards sport textiles with low-friction and moisture-wicking dual functions. Materials and Design, 2015, 88, 82–87, doi: 10.1016/j.matdes.2015.08.107.

23. ALFALEH, A., BENLTOUFA, S., FAYALA, F. Evaporation coefficient determination during the capillary rise. Textile Research Journal, 2023, 93(17–18), 4191–4196, doi: 10.1177/00405175231168425.

24. ITO, H., MURAOKA, Y. Water transport along textile fibers as measured by an electrical capacitance technique. Textile Research Journal, 1993, 63(7), 414–420, doi: 10.1177/004051759306300706.

25. HONG, K., HOLLIES, N.R.S., SPIVAK, S.M. Dynamic moisture vapor transfer through textiles. Part I: clothing hygrometry and the influence of fiber type. Textile Research Journal, 1988, 58(12), 697–706, doi: 10.1177/004051758805801203.

26. FOURT, L., CRAIG, R.A., RUTHERFORD, M.B. Cotton fibers as means of transmitting water vapor. Textile Research Journal, 1957, 27(5), 362–368, doi: 10.1177/004051755702700504.

27. FORSMAN, N., JOHANSSON, L.S., KOIVULA, H., TUURE, M., KÄÄRIÄINEN, P., ÖSTERBERG, M. Open coating with natural wax particles enables scalable, non-toxic hydrophobation of cellulose-based textiles. Carbohydrate Polymers, 2020, 227, 1–9, doi: 10.1016/j.carbpol.2019.115363.

28. MA, X., MAILLET, B., BROCHARD, L., PITOIS, O., SIDI-BOULENOUAR, R., COUSSOT, P. Vapor-sorption coupled diffusion in cellulose fiber pile revealed by magnetic resonance imaging. Physical Review Applied, 2022, 17, 1–13, doi: 10.1103/PhysRevApplied.17.024048.

29. MACHATTIE, L.E., GOODINGS, A.C., TURL, L.H. The diffusion of water vapor through laminae with particular reference to textile fabrics. Textile Research Journal, 1957, 27(5), 418–418, doi: 10.1177/004051755702700513.

30. ADAMU, B.F., GAO, J. Comfort related woven fabric transmission properties made of cotton and nylon. Fashion and Textiles, 2022, 9, 1–10, doi: 10.1186/s40691-021-00285-2.

31. LEE, S., OBENDORF, S.K. Statistical modeling of water vapor transport through woven fabrics. Textile Research Journal, 2012, 82(3), 211–219, doi: 10.1177/0040517511433145.

32. GIBSON, P.W. Factors influencing steady-state heat and water vapor transfer measurements for clothing materials. Textile Research Journal, 1993, 63(12), 749–764, doi: 10.1177/004051759306301208.

33. FOHR, J.P., COUTON, D., TREGUIER, G. Dynamic heat and water transfer through layered fabrics. Textile Research Journal, 2002, 72(1), 1–12, doi: 10.1177/004051750207200101.

34. WOODCOCK, A.H. Moisture transfer in textile systems. Part II. Textile Research Journal, 1962, 32(9), 719–723, doi: 10.1177/004051756203200903.

35. WOODCOCK, A.H. Moisture transfer in textile systems. Part I. Textile Research Journal, 1962, 32(8), 628–633, doi: 10.1177/004051756203200802.

36. CHEN, Y.S., FAN, J., ZHANG, W. Clothing thermal insulation during sweating. Textile Research Journal, 2003, 73(2), 152–157, doi: 10.1177/004051750307300210.

37. LI, Y., ZHU, Q., YEUNG, K.W. Influence of thickness and porosity on coupled heat and liquid moisture transfer in porous textiles. Textile Research Journal, 2002, 72(5), 435–46, doi: 10.1177/004051750207200511.

38. ADLER, M.M., WALSH, W.K. Mechanisms of transient moisture transport between fabrics. Textile Research Journal, 1984, 54(5), 334–343, doi: 10.1177/004051758405400510.

39. LIN, Y., CHENG, N., MENG, N., WANG, C., WANG, X., YU, J., DING, B. A patterned knitted fabric with reversible gating stability for dynamic moisture management of human body. Advanced Functional Materials, 2023, 33(44), 1–9, doi: 10.1002/adfm.202304109.

40. ABEDIN, F., DENHARTOG, E. The exothermic effects of textile fibers during changes in environmental humidity: a comparison between ISO:16533 and dynamic hot plate test method. Fibers, 2023, 11(5), 1–15, doi: 10.3390/fib11050047.

41. DING, X. Fabric permeability testing. In Fabric Testing. Edited by Jinlian Hu. Woodhead Publishing, 2008, 189–227, doi: 10.1533/9781845695064.189.

42. NIU, D., TANG, G.H. The effect of surface wettability on water vapor condensation in nanoscale. Scientific Reports, 2016, 6, 1–6, doi: 10.1038/srep19192.

43. BENLTOUFA, S., FAYALA, F., CHEIKHROUHOU, M., NASRALLAH, B. Porosity determination of jersey structure. Autex Research Journal, 2007, 7(1), 63–69, doi: 10.1515/aut-2007-070107.

44. BOUGHATTAS, A., BENLTOUFA, S., HES, L., AZEEM, M., FAYALA, F. Thermo-physiological properties of woven structures in wet state. Industria Textila, 2018, 69(4), 298–303, doi: 10.35530/it.069.04.1452.

45. ISO 5084:1996. Textiles – Determination of thickness of textiles and textile products. Geneva : International Organization for Standardization, 1996, 1–5.

46. ISO 7211-6:2020. Textiles – Methods for analysis of woven fabrics construction. Part 6: Determination of the mass of warp and weft per unit area of fabric. Geneva : International Organization for Standardization, 2020, 1–4.

47. ISO 2060:1994. Textiles – Yarn from packages – Determination of linear density (mass per unit length) by the skein method. Geneva : International Organization for Standardization, 1994, 1–13.

48. ISO 7211-2:2024. Textiles – Methods for analysis of woven fabrics construction – Part 2: Determination of number of threads per unit length. Geneva : International Organization for Standardization, 2024, 1–5.

49. KAKVAN, A., SHAIKHZADEH NAJAR, S., PSIKUTA, A. Study on effect of blend ratio on thermal comfort properties of cotton/nylon-blended fabrics with high-performance Kermel fibre. The Journal of the Textile Institute, 2015, 106(6), 674–682, doi: 10.1080/00405000.2014.934045.

50. VARSHNEY, R.K., KOTHARI, V.K., DHAMIJA, S. A study on thermophysiological comfort properties of fabrics in relation to constituent fibre fineness and cross-sectional shapes. The Journal of the Textile Institute, 2010, 101(6), 495–505, doi: 10.1080/00405000802542184.

51. ISO 9237:1995. Textiles — Determination of the permeability of fabrics to air. Geneva : International Organization for Standardization, 1995, 1–5.

52. BENLTOUFA, S.,ALGAMDY, H.,GHITH, A.,FAYALA, F.,HES, L. The water vapour resistance dynamic measurement of natural and synthetic fibre. International Journal of Clothing Science and Technology, 2024, 36(6), 1094–1105, doi: 10.1108/IJCST-01-2024-0012.

53. HES, L., DE ARAUJO, M. Simulation of the effect of air gaps between the skin and a wet fabric on resulting cooling flow. Textile Research Journal, 2010, 80(14), 1488–1497, doi: 10.1177/0040517510361797.

54. ISO 139:2005. Textiles – Standard atmospheres for conditioning and testing. Geneva : International Organization for Standardization, 2005, 1–6.

55. SAHU, P., GUPTA, M.K. Water absorption behavior of cellulosic fibres polymer composites: A review on its effects and remedies. Journal of Industrial Textiles, 2022, 51(suppl. 5), 7480S–7512S, doi: 10.1177/1528083720974424.

56. ALOMAYRI, T., ASSAEDI, H., SHAIKH, FUA., LOW, I.M. Effect of water absorption on the mechanical properties of cotton fabric-reinforced geopolymer composites. Journal of Asian Ceramic Societies, 2014, 2(3), 223–230, doi: 10.1016/J.JASCER.2014.05.005.

57. BENLTOUFA, S., FAYALA, F., NASRALLAH, S BEN. Determination of yarn and fiber diameters after swelling using a capillary rise method. The Journal of the Textile Institute, 2012, 103(5), 517–522, doi: 10.1080/00405000.2011.589573.

Downloads

Published

2025-03-20

Issue

Section

Scientific article

Categories

How to Cite

Benltoufa, S., & Algamdy, H. (2025). Breathability and Dynamic Evaporative Cooling Heat Flow of a Ripstop Defence Fabric. Tekstilec, 68(1), 70-81. https://doi.org/10.14502/tekstilec.68.2024115