Multifunctional properties of cotton fabric tailored via green synthesis of TiO2/curcumin composite

Authors

DOI:

https://doi.org/10.14502/tekstilec.68.2024135

Keywords:

multifunctional cotton, titanium dioxide, Curcuma longa, green synthesis

Abstract

In this study, a novel green process was developed to produce a multifunctional cotton (CO) fabric incorporating TiO2/curcumin composites that simultaneously provides UV protection and photocatalytic performance. For this purpose, TiO2 was synthesised using the sol–gel process; loaded with the natural colourant curcumin as a visible light absorber at two temperatures, i.e., 70 and 350 °C; and applied to the CO fabric via the pad–dry–cure process. For comparison, TiO2 was synthesised without curcumin under the same conditions. The synthesis conditions at 70 °C ensured the formation of predominantly amorphous TiO2, while curcumin promoted TiO2 crystallisation despite the low synthesis temperature. A 350 °C synthesis temperature was high enough to form the polymorphic TiO2 anatase phase. Although the increase in synthesis temperature and the presence of curcumin in the composites caused a bathochromic shift in light absorption, the photocatalytic activity of all samples was mainly driven by UV light. Chemically modifying the CO fabric significantly reduced the light transmittance of the samples, with the highest absorption of UV light obtained for the sample containing the TiO2/curcumin composite synthesised at 70 °C. This sample provided excellent UV protection with a UPF value of 51.6. All chemically modified CO samples showed photocatalytic activity, degrading coffee stains and decolourising methylene blue and Rhodamine B dye solutions. The highest photocatalytic efficiency and recyclability were obtained again for the CO sample with the TiO2/curcumin composite synthesised at 70 °C, demonstrating the synergistic effect between TiO2 and curcumin in the composite prepared under these synthesis conditions.

Downloads

Download data is not yet available.

References

1. HUMAYUN, M., RAZIQ, F., KHAN, A., LUO, W. Modification strategies of TiO2 for potential applications in photocatalysis: a critical review. Green Chemistry Letters and Reviews, 2018, 11(2), 86–102, doi: 10.1080/17518253.2018.1440324.

2. NAM, Y., LIM, J.H., KO, K.C., LEE, J.Y. Photocatalytic activity of TiO2 nanoparticles: a theoretical aspect. Journal of Materials Chemistry A, 2019, 7(23), 13833–13859, doi: 10.1039/C9TA03385H.

3. NOMAN, M.T., ASHRAF, M.A., ALI, A. Synthesis and applications of nano-TiO2: a review. Environmental Science and Pollution Research, 2019, 26, 3262–3291, doi: 10.1007/s11356-018-3884-z.

4. RASHID, M.M., SIMONČIČ, B., TOMŠIČ, B. Recent advances in TiO2-functionalized textile surfaces. Surfaces and Interfaces, 2021, 22, 1–33, doi: 10.1016/j.surfin.2020.100890.

5. ETACHERI, V., DI VALENTIN, C., SCHNEIDER, J., BAHNEMANN, D., PILLAI, S.C. Visible-light activation of TiO2 photocatalysts: advances in theory and experiments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 25, 1–29, doi: 10.1016/j.jphotochemrev.2015.08.003.

6. GIRISH KUMAR, S., KOTESWARA RAO, K.S.R. Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3 and ZnO). Applied Surface Science, 2017, 391, Part B, 124–148, doi: 10.1016/j.apsusc.2016.07.081.

7. GUO, Q., ZHOU, C., MA, Z., YANG, X. Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and xhallenges. Advanced Materials, 2019, 31(50), 1–26, doi: 10.1002/adma.201901997.

8. CARP, O., HUISMAN, C.L., RELLER, A. Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 2004, 32(1–2), 33–177, doi: 10.1016/j.progsolidstchem.2004.08.001.

9. RAHIMI, N., PAX, R.A., MacA. GRAY, E. Review of functional titanium oxides. I: TiO2 and its modifications. Progress in Solid State Chemistry, 2016, 44(3), 86–105, doi: 10.1016/j.progsolidstchem.2016.07.002.

10. SHEN, R., JIANG, C., XIANG, Q., XIE, J., LI, X. Surface and interface engineering of hierarchical photocatalysts. Applied Surface Science, 2019, 471, 43–87, doi: 10.1016/j.apsusc.2018.11.205.

11. LI, X., WEI, H., SONG, T., LU, H., WANG, X. A review of the photocatalytic degradation of organic pollutants in water by modified TiO2. Water Science & Technology, 2023, 88(6), 1495–1507, doi: 10.2166/wst.2023.288.

12. GONUGUNTLA, S., KAMESH, R., PAL, U., CHATTERJEE, D. Dye sensitization of TiO2 relevant to photocatalytic hydrogen generation: current research trends and prospects. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2023, 57, 1–28, doi: 10.1016/j.jphotochemrev.2023.100621.

13. TOMAR, N., AGRAWAL, A., DHAKA, S. V., SUROLIA, P.K. Ruthenium complexes based dye-sensitized solar cells: fundamentals and research trends. Solar Energy, 2020, 207, 59–76, doi: 10.1016/j.solener.2020.06.060.

14. KUSHWAHA, R., SRIVASTAVA, P., BAHADUR, L. Natural pigments from plants used as sensitizers for TiO2 based dye-sensitized solar cells. Journal of Energy, 2013, 2013(1), 1–8, doi: 10.1155/2013/654953.

15. JAAFAR, S.N.H., MINGGU, L.J., ARIFIN, K., KASSIM, M.B. WAN, W.R.D. Natural dyes as TiO2 sensitizers with membranes for photoelectrochemical water splitting: an overview. Renewable and Sustainable Energy Reviews, 2017, 78, 698–709, doi: 10.1016/j.rser.2017.04.118.

16. DIAZ-URIBE, C., VALLEJO, W., ROMERO, E., VILLAREAL, M., PADILLA, M., HAZBUN, N., MUÑOZ-ACEVEDO, A., SCHOTT, E., ZARATE, X. TiO2 thin films sensitization with natural dyes extracted from Bactris guineensis for photocatalytic applications: experimental and DFT study. Journal of Saudi Chemical Society, 2020, 24(5), 407–416, doi: 10.1016/j.jscs.2020.03.004.

17. GOULART, S., NIEVES, L.J.J., DAL BÓ, A.G., BERNARDIN, A.M. Sensitization of TiO2 nanoparticles with natural dyes extracts for photocatalytic activity under visible light. Dyes and Pigments, 2020, 182, 1–6, doi: 10.1016/j.dyepig.2020.108654.

18. HAGHIGHATZADEH, A. Comparative analysis on optical and photocatalytic properties of chlorophyll/curcumin-sensitized nanoparticles for phenol degradation. Bulletin of Materials Science, 2020, 43, 1–15, doi: 10.1007/s12034-019-2016-9.

19. VENUMBAKA, M.R., AKKALA, N., DURAISAMY, S., SIGAMANI, S., KUMAR POOLA, P., RAO, D.S., MAREPALLY, B.C. Performance of TiO2, Cu-TiO2, and N-TiO2 nanoparticles sensitization with natural dyes for dye-sensitized solar cells. Materials Today: Proceedings, 2022, 49(7), 2747–2751, doi: 10.1016/j.matpr.2021.09.281.

20. RAHMAWATI, T. Green synthesis of Ag-TiO2 nanoparticles using turmeric extract and its enhanced photocatalytic activity under visible light. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 665, 1–14, doi: 10.1016/j.colsurfa.2023.131206.

21. PRIYADARSINI, K.I. The chemistry of curcumin: from extraction to therapeutic agent. Molecules, 2014, 19(12), 20091-20112, doi: 10.3390/molecules191220091.

22. ABD EL-HADY, M.M., FAROUK, A., SAEED, S.E.-S., ZAGHLOUL, S. Antibacterial and UV protection properties of modified cotton fabric using a curcumin/TiO2 nanocomposite for medical textile applications. Polymers, 2021, 13(22), 1–14, doi: 10.3390/polym13224027.

23. FULORIA, S., MEHTA, J., CHANDEL, A., SEKAR, M., RANI, N.N.I. M, BEGUM, M. Y., SUBRAMANIYAN, V., CHIDAMBARAM, K., THANGAVELU, L., NORDIN, R., WU, Y.S., SATHASIVAM, K.V., LUM, P.T., MEENAKSHI, D.U., KUMARASAMY, V., AZAD, A.K., FULORIA, N.K. A comprehensive review on the therapeutic potential of Curcuma longa Linn. in relation to its major active constituent curcumin. Frontiers in Pharmacology, 2022, 13, 1–27, doi: 10.3389/fphar.2022.820806.

24. UROŠEVIĆ, M., NIKOLIĆ, L., GAJIĆ, I., NIKOLIĆ, V., DINIĆ, A., MILJKOVIĆ, V. Curcumin: biological activities and modern pharmaceutical forms. Antibiotics, 2022, 11(2), 1–27, doi: 10.3390/antibiotics11020135.

25. JIKAH, A.N., EDO, G.I. Turmeric (Curcuma longa): an insight into its food applications, phytochemistry and pharmacological properties. Vegetos (An International Journal of Plant Research & Biotechnology), 2024, in press, doi: 10.1007/s42535-024-01038-4.

26. PALASKAR, S.S., KALE, R.D., DESHMUKH, R.R. Application of natural yellow (curcumin) dye on silk to impart multifunctional finishing and validation of dyeing process using BBD model. Color Research & Application, 2021, 46(6), 1301–1312, doi: 10.1002/col.22678.

27. SCHMIDT, M., BIERHALZ, A.C.K., DE AGUIAR, C.R.L. Adsorption, kinetic, and thermodynamic studies of natural curcumin dye on cotton and polyamide fabric and the liberation of its active principle. The Canadian Journal of Chemical Engineering, 2024, 102(10), 1–13, doi: 10.1002/cjce.25277.

28. ABOU-GAMRA, Z.M., AHMED, M.A. Synthesis of mesoporous TiO2-curcumin nanoparticles for photocatalytic degradation of methylene blue dye. Journal of Photochemistry and Photobiology, B: Biology, 2016, 160, 134–141, doi: 10.1016/j.jphotobiol.2016.03.054.

29. BOKUNIAEVA, A.O., VOROKH, A.S. Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO2 powder. Journal of Physics: Conference Series, 2019, 1410, 1–7, doi: 10.1088/1742-6596/1410/1/012057.

30. REDDY, K.M., MANORAMA, S.V., REDDY, A.R. Bandgap studies on anatase titanium dioxide nanoparticles. Materials Chemistry and Physics, 2003, 78, 239–245.

31. KARKARE, M.M. The Direct transition and not Indirect transition, is more favourable for Band Gap calculation of Anatase TiO2 nanoparticles. International Journal of Scientific & Engineering Research, 2015, 6(12), 48–53.

32. SIST EN 13758-1:2002. Textiles - Solar UV protective properties - Part 1: Method of test for apparel fabrics. Geneva : International Organization for Standardization, 12 p.

33. BERGER-SCHUNN, A. Practical color measurement: a primer for the beginner, a reminder for the expert. New York : Wiley, 1994, p. 39.

34. SHAFIQUE, M., MAHR, M.S., YASEEN, M., BHATTI, H.N. CQD/TiO2 nanocomposite photocatalyst for efficient visible light-driven purification of wastewater containing methyl orange dye. Materials Chemistry and Physics, 2022, 278, 1–14, doi: 10.1016/j.matchemphys.2021.125583.

35. WU, F., LI, X., WANG, Z., GUO, H., WU, L., XIONG, X., WANG, X. A novel method to synthesize anatase TiO2 nanowires as an anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2011, 509(8), 3711–3715, doi: 10.1016/j.jallcom.2010.12.182.

36. DING, L., YANG, S., LIANG, Z., QIAN, X., CHEN, X., CUI, H., TIAN, J. TiO2 nanobelts with anatase/rutile heterophase junctions for highly efficient photocatalytic overall water splitting. Journal of Colloid and Interface Science, 2020, 567, 181–189, doi: 10.1016/j.jcis.2020.02.014.

37. TORO, R.G., DIAB, M., DE CARO, T., AL-SHEMY, M., ADEL, A., CASCHERA, D. Study of the effect of titanium dioxide hydrosol on the photocatalytic and mechanical properties of paper sheets. Materials, 2020, 13(6), 1–19, doi: 10.3390/ma13061326.

38. ZHAO, H., KWAK, J.H., ZHANG, Z.C., BROWN, H.M., AREY, B.W., HOLLADAY, J.E. Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohydrate Polymers, 2007, 68(2), 235–241, doi: 10.1016/j.carbpol.2006.12.013.

39. AHMAD, M.M., MUSHTAQ, S., AL QAHTANI, H.S., SEDKY, A., ALAM, M.W. Investigation of TiO2 nanoparticles synthesized by sol-gel method for effectual photodegradation, oxidation and reduction reaction. Crystals, 2021, 11(12), 1–16, doi: 10.3390/cryst11121456.

40. SOCRATES, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts. 3rd edition. New York : Wiley, 2004.

41. TOMŠIČ, B., SIMONČIČ, B., VINCE, J., OREL, B., VILČNIK, A., FIR, M., ŠURCA VUK, A., JOVANOVSKI, V. The use of ATR IR spectroscopy in the study of structural changes of the cellulose fibres. Tekstilec, 2007, 50(1–3), 3–15.

42. ROHMAN, A., DEVI, S., RAMADHANI, D., NUGROHO, A. Analysis of curcumin in Curcuma longa and Curcuma xanthorriza using FTIR spectroscopy and chemometrics. Research Journal of Medicinal Plant, 2015, 9(4), 179–186, doi: 10.3923/RJMP.2015.179.186.

43. SHARMA, S., DHALSAMANT, K., TRIPATHY, P.P., MANEPALLY, R.K. Quality analysis and drying characteristics of turmeric (Curcuma longa L.) dried by hot air and direct solar dryers. LWT, 2021, 138, 1–10, doi: 10.1016/j.lwt.2020.110687.

44. BALLESTEROS, J.I., LIM, L.H.V., LAMORENA, R.B. The feasibility of using ATR-FTIR spectroscopy combined with one-class support vector machine in screening turmeric powders. Vibrational Spectroscopy, 2024, 130, 1–7, doi: 10.1016/j.vibspec.2023.103646.

45. LEÓN, A., REUQUEN, P., GARÍN, C., SEGURA, R., VARGAS, P., ZAPATA, P., ORIHUELA, P.A. FTIR and raman characterization of TiO2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol. Applied Sciences, 2017, 7(1), 1–9, doi: 10.3390/app7010049.

46. RASHID, M.M., ZORC, M., SIMONČIČ, B., JERMAN, I., TOMŠIČ, B. In-situ functionalization of cotton fabric by TiO2: the influence of application routes. Catalysts, 2022, 12(11), 1–17, doi: 10.3390/catal12111330.

47. GUETNI, I., BELAICHE, M., FERDI, C.A., OULHAKEM, O., ALAOUI, K.B., ZAOUI, F., BAHIJE, L. Novel modified nanophotocatalysts of TiO2 nanoparticles and TiO2/Alginate beads with lanthanides [La, Sm, Y] to degrade the Azo dye Orange G under UV-VIS radiation. Materials Science in Semiconductor Processing, 2024, 174, 1–19, doi: 10.1016/j.mssp.2024.108193.

48. TOMŠIČ, B., SAVNIK, N., SHAPKOVA, E., CIMPERMAN, L., ŠOBA, L., GORJANC, M., SIMONČIČ, B. Green in-situ synthesis of TiO2 in combination with Curcuma longa for the tailoring of multifunctional cotton fabric. Tekstilec, 2023, 66(4), 321–338, doi: 10.14502/tekstilec.66.2023075.

49. IVANUŠA, M., KUMER, B., PETROVČIČ, E., ŠTULAR, D., ZORC, M., JERMAN, I., GORJANC, M., TOMŠIČ, B., SIMONČIČ, B. Eco-friendly approach to produce durable multifunctional cotton fibres using TiO2, ZnO and Ag NPs. Nanomaterials, 2022, 12(8), 1–21, doi: 10.3390/nano12183140.

50. BÖTTCHER, H., MAHLTIG, B., SARSOUR, J., STEGMAIER, T. Qualitative investigations of the photocatalytic dye destruction by TiO2-coated polyester fabrics. Journal of Sol-Gel Science and Technology, 2010, 55, 177–185, doi: 10.1007/s10971-010-2230-9.

51. CHUMROENPHAT, T., SOMBOONWATTHANAKUL, I., SAENSOUK, S., SIRIAMORNPUN, S. Changes in curcuminoids and chemical components of turmeric (Curcuma Longa l.) under freeze-drying and low-temperature drying methods. Food Chemistry, 2021, 339, 1–9, doi: 10.1016/j.foodchem.2020.128121.

Downloads

Published

2025-03-20

Issue

Section

Scientific article

Categories

How to Cite

Tomšič, B. ., Blagojevič, M., Klančar, N., Makoter, E., Močenik, K., Nika, P., Šmid, S., Veskova, M., Gorjanc, M., Kert, M., & Simončič, B. (2025). Multifunctional properties of cotton fabric tailored via green synthesis of TiO2/curcumin composite. Tekstilec, 68(1), 82-99. https://doi.org/10.14502/tekstilec.68.2024135

Most read articles by the same author(s)